
Polyspace® Products for Ada
Reference

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Products for Ada Reference
© COPYRIGHT 1999–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2009 Online Only Revised for Version 5.3 (Release 2009a)
September 2009 Online Only Revised for Version 5.4 (Release 2009b)
March 2010 Online Only Revised for Version 5.5 (Release 2010a)
September 2010 Online Only Revised for Version 6.0 (Release 2010b)
April 2011 Online Only Revised for Version 6.1 (Release 2011a)
September 2011 Online Only Revised for Version 6.2 (Release 2011b)
March 2012 Online Only Revised for Version 6.3 (Release 2012a)
September 2012 Online Only Revised for Version 6.4 (Release 2012b)
March 2013 Online Only Revised for Version 6.5 (Release 2013a)
September 2013 Online Only Revised for Version 6.6 (Release 2013b)
March 2014 Online Only Revised for Version 6.7 (Release 2014a)
October 2014 Online Only Revised for Version 6.8 (Release 2014b)
March 2015 Online Only Revised for Version 6.9 (Release 2015a)
September 2015 Online Only Revised for Version 6.10 (Release 2015b)
March 2016 Online Only Revised for Version 6.11 (Release 2016a)
September 2016 Online Only Revised for Version 6.12 (Release 2016b)
March 2017 Online Only Revised for Version 6.13 (Release 2017a)
September 2017 Online Only Revised for Version 6.14 (Release 2017b)
March 2018 Online Only Revised for Version 6.15 (Release 2018a)
September 2018 Online Only Revised for Version 6.16 (Release 2018b)
March 2019 Online Only Revised for Version 6.17 (Release 2019a)
September 2019 Online Only Revised for Version 6.18 (Release 2019b)
March 2020 Online Only Revised for Version 6.19 (Release 2020a)
September 2020 Online Only Revised for Version 6.20 (Release 2020b)
March 2021 Online Only Revised for Version 6.21 (Release 2021a)

Option Descriptions
1

Check Descriptions
2

Assumptions Used During Verification
3

Why Polyspace Verification Uses Approximations . 3-2
What is Static Verification . 3-2
Exhaustiveness . 3-2

Procedure Calls with Default Parameters . 3-3
Example . 3-3
Explanation . 3-3

_INIT_PROC Procedures . 3-5
Example . 3-5

Expansion of Sizes . 3-6

Inline Assemblers . 3-7

Volatile Variables . 3-8
Problem . 3-8
Explanation . 3-8

Shared Variables . 3-9
Abstract . 3-9
Explanation . 3-9
Solution . 3-9
Critical Sections . 3-9
Mutual Exclusion . 3-10
Rendezvous . 3-11
Semaphores . 3-12

Pointers to Explicit Tasks . 3-13

Limitations of Polyspace Verification . 3-14

v

Contents

Code Metrics
4

Global Variables
5

Report Components
6

vi Contents

Option Descriptions

1

Send to Polyspace Server
Specify whether verification runs on the server or client system

Description
Specify whether verification runs on the server or client system.

Settings
Default: On

 On
Run verification on the Polyspace server. You specify the server in the Polyspace Preferences
dialog box.

 Off
Run verification on the client system

Tips
• Specifying this option in the user interface sends the verification to the default server.
• You specify the default server in the Server Configuration tab of the Polyspace preferences

dialog box (Options > Preferences).
• When specifying the -server option at the command line, you can specify the name or IP address

of a specific server, along with the port number.
• If you do not specify a server, the default server referenced in the preferences file is used.
• If you do not specify a port number, port 12427 is used by default.

Command-Line Information
Parameter: -server
Value: name or IP address:port number
Shell script example:polyspace-remote-ada -server 192.168.1.124:12400

See Also
“Specify Analysis Options” | Add to results repository

1 Option Descriptions

1-2

Add to results repository
Specify upload of analysis results to the Polyspace Metrics results repository

Description
Specify upload of analysis results to the Polyspace Metrics results repository, allowing Web-based
reporting of results and code metrics.

Settings
Default: Off

 On
Analysis results are stored in the Polyspace Metrics results repository. This allows you to use a
Web browser to view results and code metrics.

 Off
Analysis results are stored locally.

Dependency
This option is available only for remote verifications.

Command-Line Information
Parameter: -add-to-results-repository
Default: off
Example: polyspace-remote-ada -server IPaddress -add-to-results-repository

See Also
“Specify Analysis Options” | Send to Polyspace Server

 Add to results repository

1-3

Source code language
Specify the language of your source files

Description
Specify the language of your source files. If your code is written to Ada83 standards, choose this
option before specifying any other configuration options.

This option is available on the Target & Compiler node in the Configuration pane.

Settings
Default: Ada95

Ada95
This value restricts the verification to Ada95 language conventions. All files are interpreted and
compiled as Ada95 files.

Ada83
This value restricts the verification to Ada83 language conventions. All files are interpreted and
compiled as Ada83 files.

Command-Line Information
Parameter: -lang
Value: ada83 | ada95
Default: ada95

1 Option Descriptions

1-4

Target operating system
Specify operating system target

Description
Specify operating system target for which there are implementation-specific declarations in the Ada
Standard Libraries

Settings
Polyspace supplies only gnat include files, which you can find in the ada include folder within the
installation folder. You can verify projects for other operating systems by using the corresponding
include files (not supplied). For instance, to verify a greenhills project, specify files from the
greenhills_include_folder in the Include folder for your project. See “Add Source and Include
Folders”.

Default: no-predefined-OS

no-predefined-OS
No operating system (with implementation-specific declarations in Ada Standard Libraries)
specified

gnat
GCC Ada95

greenhills
Greenhills® Software real-time operating system (RTOS)

rational
IBM® Rational® Apex compiler

aonix
Aonix® compiler.

Command-Line Information
Parameter: -OS-target
Type: string
Value: no-predefined-OS | gnat | greenhills | rational | aonix
Default: no-predefined-OS

Shell script examples:
polyspace-ada -OS-target gnat

polyspace-ada -OS-target greenhills

See Also
“Specifying Target & Compiler Parameters”

 Target operating system

1-5

-shared-variables-mode
Compute global variable sharing and usage without running full analysis

Description
Specify this option to run a less extensive analysis that computes the global variable sharing and
usage in your entire application. The analysis does not verify your code for run-time errors. The
analysis results also include code metrics if you enable code metrics computation.

Set Option

User interface: In your project configuration, specify the option -shared-variables-mode in the
Other on page 1-51 field on the Advanced Settings node.

Command line: Use the option -shared-variables-mode. See “Command-Line Information” on
page 1-6.

Why Use This Option

You can see global variable sharing and usage without running a full analysis on your entire
application that includes run-time error detection. Run-time error detection on an entire application
can take a long time.

Settings
 On

Polyspace computes global variable sharing and usage but does not verify your code for run-time
errors.

 Off (default)
Polyspace runs a full analysis on your code, including run-time error detection.

Dependencies
• User interface: Select Verify whole application and specify Main entry point.
• Command Line: Specify the -main option.

Tips
• After you analyze your complete application to see global variable sharing and usage, run a

component-by-component analysis to detect run-time errors.
• In the desktop product, you can see all read and write operations on global variables in the

“Variable Access” pane.
• In this less extensive analysis mode, the analysis computes most but not all code metrics.

Command-Line Information
Parameter: -shared-variables-mode

1 Option Descriptions

1-6

Default: Off
Example: polyspace-ada -sources file_name -main mainpackage.init -shared-
variables-mode

See Also
Topics
“Analysis Options”

Introduced in R2019b

 -shared-variables-mode

1-7

Target processor type
Specify the target processor type

Description
Specify the target processor type.

Settings
Default: i386

i386
Intel® 80386 (i386) processor

sparc
Sun® Microsystems SPARC® processor

m68k
Freescale ColdFire® m68k processor

1750a
MIL-STD-1750A 16-bit instruction set architecture

powerpc64bit
PowerPC® 64-bit instruction set architecture

powerpc32bit
PowerPC 32–bit instruction set architecture

Command-Line Information
Parameter: -target
Type: string
Value: sparc | m68k | 1750a | powerpc64bit | powerpc32bit | i386
Default: i386
Shell script example: polyspace-ada -target m68k

See Also
“Specifying Target & Compiler Parameters”

1 Option Descriptions

1-8

Files extensions
Specify extensions used by package specification files

Description
Specify extensions used by package specification files in the Include folder of your project. Package
specification files contain definitions and declarations referenced by your Ada body files. The
software assumes that body files and the corresponding package specification files have the same
names except for the extensions.

Settings
Default: *.ad[sa]

Command-Line Information
Parameter: -extensions-for-spec-files
Type: string
Value: Valid file extensions
Default: *.ad[sa]

 Files extensions

1-9

Remove ambiguities in comparison operators
Specify whether to remove ambiguities regarding the visibility of relational operators

Description
Specify whether to remove ambiguities regarding the visibility of relational operators (=, /=, <=, =>,
>, and <).

In the following code:
Package A is
 type T1 is new Integer range 0 .. 100; -- line 1
end A;
 -- Other file:example1.adb
with A; use A;
Package B is
 subtype T2 is T1 range 2..80;
end B;

Package OTHER_IABC_ADA_4 is
 procedure Main;
end OTHER_IABC_ADA_4;

with B; use B;
Package body OTHER_IABC_ADA_4 is
 X, Y : T2;
procedure Main is
 begin
 null;
 pragma Assert (TRUE);
end Main;
 begin
 X := 12;
 Y := 10;
 if X > Y then -- line 21
 pragma Assert (True);
 null;
 end if;
end OTHER_IABC_ADA_4;

If you select the check box, the software does not generate errors. If you do not select the check box,
the software generates errors:

• Polyspace found an error in ./example1.adb:21:07: operator for type "T1"
defined at ./example1.adb:1 is not directly visible

• Polyspace found an error in /example1.adb:21:07: use clause would make
operation legal

Settings
Default: Off

 On
Remove ambiguities.

 Off
Do not remove ambiguities. The type of operand determines whether the operator is visible.

1 Option Descriptions

1-10

Command-Line Information
Parameter: -base-type-directly-visible

See Also
“Common Compile Errors”

 Remove ambiguities in comparison operators

1-11

Value of the constant Storage_Unit
Specify a positive value for System.Storage_Unit.

Description
Specify a positive value for Storage_Unit constant in System package.

Settings
Default: 8, except for target processor type 1750a whose default is 16

• If you do not specify a value, the default in the SYSTEM package is used.
• The value required depends on the code that you write. For example, if the value for Storage_Unit

is 8, the following code generates an error message A overlaps B:

-- Definition of record type
type REC is record
 A : integer;
 B : boolean;
end REC;
-- Representation clause of this record
for REC use record
 A at 0 range 0 .. 31;
 B at 1 range 0 .. 31;
end record

In this case, set the value of Storage_Unit to 32.

Command-Line Information
Parameter: -storage-unit
Value: Integer
Default: 8, except for target processor type 1750a whose default is 16

See Also
“Common Compile Errors”

1 Option Descriptions

1-12

Preprocessor definitions
Define compiler flags for compilation of preprocessor macros

Description
Define compiler flags for compilation of preprocessor macros.

The software supports the following forms of preprocessor macros in your code:

if expression
 ... code statements ...
end if;

if expression
 ... statements ...
else
 ... statements ...
end if;

if expression
 ... statements ...
elsif expression
 ... statements ...
end if;

expression can be one of the following:

• compiler_flag
• compiler_flag="value"
• not (expression)
• expression and expression
• expression or expression
• expression and then expression
• expression or else expression

This option allows you to specify compiler flags that are present in expression.

Settings
No Default

• To define a compiler flag, in the Defined Preprocessor Macros dialog box, enter:
compiler_flag="value"

Then, click the Adds this item to the list button .
• Omitting the flag value is equivalent to specifying compiler_flag="True".
• Flag values are case-insensitive strings.
• To remove a compiler flag from the list, in the Defined Preprocessor Macros dialog box, select the

compiler flag. Then, click the button .

 Preprocessor definitions

1-13

• Consider the following example.
with Apex_Processes;
with Apex_Types;

package Lift_Load_Control_Process_P is

 procedure Start_S;

 use type Apex_Processes.Process_Name_Type;
 Process_Attr : constant Apex_Processes.Process_Attribute_Type :=
 (Name => "Lift_Load_Control_Process_P ",
 Entry_Point => Apex_Types.System_Address_Type(Start_S'Address),
 Stack_Size => 40000,
 Base_Priority => 101,
#if VEROCODE
 Period => Apex_Types.System_Time_Type(160000000),
#else
 Period => Apex_Types.System_Time_Type(16000000),
#end if;
 Time_Capacity => Apex_Types.System_Time_Type(10000000000),
 Deadline => Apex_Processes.SOFT);

 Process_Id : aliased Apex_Processes.Process_Id_Type;
end Lift_Load_Control_Process_P;

If you specify VEROCODE="True", then Polyspace does not verify code associated with the #else
and #end if parts of the if statement. You will still see this code when you view results in the
Polyspace user interface. However, as this code is not verified, its operations are not assigned a
color.

• As in the command line with compilers, you must specify only one flag for each -D option.
However, you can use this option several times.

Command-Line Information
Parameter: -D
Type: string
Shell script example:
polyspace-ada -lang ada95 -D HAVE_MYLIB -D No_debug="Yes" -D USE_COM1="true" ...

See Also
• Disable preprocessor definitions
• “Specifying Target & Compiler Parameters”

1 Option Descriptions

1-14

Disable preprocessor definitions
Undefine macro compiler flags during compilation phase

Description
Nullify (undefine) macro compiler flags during compilation phase

Settings
No Default

• In the Undefined Preprocessor Macros dialog box, enter compiler_flag. Then click the Adds

this item to the list button .
• Nullifying a macro compiler flag is equivalent to specifying in Defined Preprocessor Macros

compiler_flag="False".
• To remove a compiler flag from the list, in the Undefined Preprocessor Macros dialog box, select

the compiler flag. Then, click the button .
• As in the command line with compilers, you must specify only one flag for each -U option.

However, you can use this option several times.

Command-Line Information
Parameter: -U
Type: string
Shell script example:
polyspace-ada -lang ada95 -U HAVE_MYLIB -U USE_COM1 ...

See Also
• Preprocessor definitions
• “Specifying Target & Compiler Parameters”

 Disable preprocessor definitions

1-15

Command/script to apply before start of the code
verification
Specify script file or command to run before the verification of each source file

Description
Specify script file or command to run before the verification of each source file.

You can run scripts on preprocessed files to work around compilation errors or imprecisions of the
analysis while keeping your original source files untouched. For instance, suppose Polyspace does not
recognize a compiler-specific keyword. If you are certain that the keyword is not relevant for the
analysis, you can run a Perl script to remove all instances of the keyword. When you use this option,
the software removes the keyword from your preprocessed code but keeps your original code
untouched.

Settings
No Default

Enter full path to the command or script or click to navigate to the location of the command or
script. This script is executed before verification.

For instance, use this Perl script as template. The script replaces all instances of the Volatile
keyword with the Import keyword.

#!/usr/bin/perl
my $TOOLS_VERSION = "V1_4_1";
binmode STDOUT;

Process every line from STDIN until EOF
while ($line = <STDIN>)
{
 # Change Volatile to Import
 $line =~ s/Volatile/Import/;
 print $line;
}

To run a Perl script in Windows®, specify the full path to the Perl executable followed by the full path
to the script. For instance, if your Perl script is named replace_keyword.pl and you use the Perl
executable that comes with MATLAB®, enter the following:

matlabroot\sys\perl\win32\bin\perl.exe absolute_path\replace_keyword.pl

Here, matlabroot is the location of the current MATLAB installation such as C:\Program Files
\MATLAB\R2015b\ and absolute_path is the location of the Perl script. If the paths contain
spaces, use quotes to enclose the full path names.

You can use Perl regular expressions to perform substitutions. For instance, you can use the following
expressions.

1 Option Descriptions

1-16

Expression Meaning
. Matches any single character except newline
[a-z0-9] Matches any single letter in the set a-z, or digit in the set 0-9
[^a-e] Matches any single letter not in the set a-e
\d Matches any single digit
\w Matches any single alphanumeric character or _
x? Matches 0 or 1 occurrence of x
x* Matches 0 or more occurrences of x
x+ Matches 1 or more occurrences of x

For complete list of regular expressions, see Perl documentation.

Command-Line Information
Parameter: -pre-analysis-command
Type: string
Value: Script file name or command
Example:: polyspace-ada.exe -pre-analysis-commandmatlabroot\sys\perl\win32\bin
\perl.exe absolute-path\replace_keyword

See Also
“Specifying Target & Compiler Parameters”

 Command/script to apply before start of the code verification

1-17

https://perldoc.perl.org/perlre.html#Regular-Expressions

Include folders
View the include folders used for verification

Description
View the include folders used for verification.

• To add include folders, on the Project Browser, right-click your project. Select Add Source.
• To view the include folders you used, with your results open, select Window > Show/Hide View

> Configuration. Under the node Environment Settings, you see the folders listed under
Include folders.

Settings
This is a read-only option available only for your result configuration. Unlike other options, you do not
specify include folders on the Configuration pane. Instead, you add your include folders on the
Project Browser pane.

Command-Line Information
Parameter: -I
Value: Folder name
Example: polyspace-ada -I /com1/inc -I /com1/sys/inc

1 Option Descriptions

1-18

Verify whole application
Specify that Polyspace verification must use a procedure you designate as the main subprogram

Description
Specify that Polyspace verification must use a procedure you designate as the main subprogram.

Settings
Default: Off

 On
Polyspace uses the procedure you designate as the main subprogram. Enter the name of the
procedure in the Main entry point field.

 Off
Polyspace generates a main procedure to wrap uncalled procedures in the module you are
verifying.

Command-Line Information
The command-line option -main combines the two user interface options Verify whole application
and Main entry point.
Parameter: -main
Value: Procedure name
Example: polyspace-ada -sources filename -main mainpackage.init

See Also
Main entry point | Entry points

Topics
“Specify Analysis Options”
“Automatically Generating a Main”
“Main Generator Overview”

 Verify whole application

1-19

Main entry point
Specify the procedure that Polyspace verification must use as the main subprogram

Description
Specify the procedure that Polyspace verification must use as the main subprogram. This procedure
is verified after package elaboration and before other tasks in case of multitasking code.

Settings
Enter procedure name.

Dependencies
This option is enabled only if you select the option Verify whole application.

Command-Line Information
The command-line option -main combines the two user interface options Verify whole application
and Main entry point.

Parameter: -main
Value: Procedure name
Example: polyspace-ada -sources filename -main mainpackage.init

See Also
Verify whole application | Entry points

Topics
“Specify Analysis Options”
“Automatically Generating a Main”
“Main Generator Overview”

1 Option Descriptions

1-20

Multitasking
Specify whether the code is intended for a multitasking application

Description
Specify whether the code is intended for a multitasking application.

Settings
Default: Off

 On
The code is intended for a multitasking application.

 Off
The code is not intended for a multitasking application. Polyspace verifies only those functions
that are called by the Main entry point.

Command-Line Information
There is no command-line option to solely turn on multitasking verification. However, using the option
-entry-points turns on multitasking verification.

See Also
Entry points | Critical section details | Temporally exclusive tasks

Topics
“Specify Analysis Options”
“Modelling Synchronous Tasks”
“Interruptions and Asynchronous Events/Tasks”
“Priorities”
“Polyspace Software Assumptions”

 Multitasking

1-21

Entry points
Specify the procedures that Polyspace must consider as entry points in a multitasking application

Description
For multitasking code, specify the procedures that Polyspace must consider as entry points.

Settings
No Default

Click to add a field. Enter the procedure name.

Dependencies
This option is enabled only if you select the Multitasking box.

Tips
• The procedures designated as entry points must not have input parameters. If they have input

parameters, encapsulate them in procedures without parameters and pass the parameters
through global variables.

• You can also specify entry points in your code with the Ada keyword task. Specifying entry points
using this keyword overrides entry point specification through the Configuration pane.

Command-Line Information
Parameter: -entry-points
Value: Name of task
Shell script example: polyspace-ada -sources filename -entry-points pack1.proc1,
pack2.proc2, pack3.proc3

See Also
Main entry point | Critical section details | Temporally exclusive tasks

Topics
“Specify Analysis Options”
“Modelling Synchronous Tasks”
“Interruptions and Asynchronous Events/Tasks”
“Priorities”
“Polyspace Software Assumptions”

1 Option Descriptions

1-22

Critical section details
Specify the procedures that begin and end critical sections

Description
Specify the procedures that begin and end critical sections. You can use this option to model
protection of shared resources, or to model interruption enabling and disabling.

Settings
No Default

Click to add a field.

• In the column Procedure beginning, enter the name of the procedure that begins the critical
section.

• In the column Procedure ending, enter the name of the procedure that ends the critical section.

Dependencies
This option is enabled only if you select the Multitasking box.

Command-Line Information
Parameter: -critical-section-begin | -critical-section-end
Value: Entries in the form "procedure_1_name:critical_section_name"
Example: polyspace-ada -sources filename -entry-points
pktasking.one_interrupt1, pktasking.one_interrupt2 -critical-section-begin
"pkutil.begin_cs" -critical-section-end "pkutil.end_cs"

See Also
Entry points | Temporally exclusive tasks

Topics
“Specify Analysis Options”
“Modelling Synchronous Tasks”
“Shared Variables” on page 3-9

 Critical section details

1-23

Temporally exclusive tasks
Specify the tasks that do not execute concurrently.

Description
Specify the tasks that do not execute concurrently. You can use this option to implement temporal
exclusion of tasks.

Settings
No Default

Click to add a field. In each field, enter the name of a group of temporally excluded tasks. For the
command-line option, create a temporal exclusions file in the following format:

• On each line, enter one group of temporally excluded tasks.
• Within a line, use spaces to separate tasks.

Dependencies
This option is enabled only if you select the Multitasking box.

Command-Line Information
Parameter: -temporal-exclusions-file
Value: Name of temporal exclusions file
Example: polyspace-ada -sources filename -entry-points
pktasking.one_interrupt1, pktasking.one_interrupt2 -temporal-exclusions-file
"C:\exclusions_file.txt"

See Also
Entry points | Critical section details

Topics
“Specify Analysis Options”
“Modelling Synchronous Tasks”
“Shared Variables” on page 3-9

1 Option Descriptions

1-24

Verify module
Specify that Polyspace should generate a main subprogram during verification

Description
Specify that Polyspace should generate a main subprogram during verification.

Settings
Default: On

 On
Polyspace generates a main subprogram.

Entities Action of generated main
Procedures and
functions

The generated main calls procedures and functions that are:

• Specified in package declarations in the code. If a package declaration
is inside a procedure or another package, the generated main does not
call procedures in the declaration.

• Specified outside a package.

For these procedures and functions, Polyspace initializes the in and out
parameters with random values.

The generated main does not call procedures and functions that are
already called in the code.

Global variables The generated main assigns a random value to global variables that are
specified in the :

• Package declaration.

If you do not initialize a global variable before reading it in the
package body, Polyspace generates an orange Non-initialized
variable check. The check is orange because there can be some
execution paths where the global variable is written outside the
package body before it is read.

• Package body.

If you do not initialize a global variable before reading it in the
package body, Polyspace generates a red Non-initialized
variable check if you read the variable in the package body. The
check is red because there cannot be an execution path where the
global variable is written outside the package body before it is read.

 Off
Polyspace does not generate a main subprogram. Instead it uses the procedure you specified
using the option Main entry point as the main subprogram.

 Verify module

1-25

Tips
• If you use the option Verify module, the software treats tasks specified in the code using the

task keyword as ordinary procedures. In particular, it ignores:

• Entry calls using the accept keyword.
• Protection mechanism for shared variables.

Command-Line Information
Parameter: -main-generator

See Also
Verify whole application | Main entry point | Initialization of uninitialized
global variables

Topics
“Specify Analysis Options”
“Modelling Synchronous Tasks”

1 Option Descriptions

1-26

Verify files independently
Specify that each source file must be verified independently of other source files

Description
Specify that each source file must be verified independently of other source files. Each file is verified
individually, independent of other files in the module. Verification results can be viewed for the entire
project, or for individual units.

After you open the verification result for one file, you can see a summary of results for all files on the
Dashboard pane. You can open the results for each file directly from this summary table. For more
information, see “Run File-by-File Local Verification”.

Settings
Default: Off

 On
Polyspace creates a separate verification job for each source file.

 Off
Polyspace creates a single verification job for all source files in a module.

Dependencies
This option is enabled only if you select Verify module on the Configuration pane.

Tips
• If you perform a file by file verification, you cannot specify multitasking options.
• If your verification for the entire project takes very long, perform a file by file verification. After

the verification is complete for a file, you can view the results while other files are still being
verified.

Command-Line Information
Parameter: -unit-by-unit
Example: polyspace-ada -sources filename -unit-by-unit

See Also
Common source files

Topics
“Specify Analysis Options”
“Run File-by-File Local Verification”

 Verify files independently

1-27

Common source files
Specify files that you want to include with each source file verification

Description
Specify files that you want to include with each source file verification. These files are compiled once,
and then linked to each verification. For instance, if multiple source files call the same procedure, you
can use this option to specify the file that contains the procedure definition. Otherwise, Polyspace
stubs procedures that are called but not defined in the source files.

Settings
No Default

Click to add a field. Enter full path to file. Alternatively, you can use to navigate to file
location.

Command-Line Information
Parameter: -unit-by-unit-common-source
Value: Full path to file
Example: polyspace-ada -sources filename -unit-by-unit -unit-by-unit-common-
source "C:/polyspace/function.adb"

See Also
Verify files independently

Topics
“Specify Analysis Options”
“Run File-by-File Local Verification”

1 Option Descriptions

1-28

Constraint setup
Specify range for global variables or in and in out parameters of procedures and functions

Description
Specify range for global variables or in and in out parameters of procedures and functions using a
text file.

Settings
No Default

Enter full path to template file. Otherwise use to navigate to file location.

The template file can be a text file where you provide the ranges in a specific format. For more
information, see “Constraint File Format”.

Command-Line Information
Parameter: -data-range-specifications
Value: Full path to text file with constraints
Example: polyspace-ada -sources filename -data-range-specifications
"C:\Polyspace\drs.txt"

See Also
Initialization of uninitialized global variables

Topics
“Specify Analysis Options”
“Specifying Constraints Using Text Files”
“Performing Efficient Module Testing with Constraints”
“Reducing Orange Checks with External Constraints”

 Constraint setup

1-29

Initialization of uninitialized global variables
Specify how Polyspace treats global variables that are not initialized

Description
Specify how Polyspace treats global variables that are not initialized.

Settings
Default: No initialization

No initialization
Polyspace considers the global variables as uninitialized. If the variable is read before being
written, Polyspace produces a red or orange Non initialized variable check.

With random value
Polyspace initializes the global variables with random values.

With zero or random value
Polyspace initializes the global variables with zero if the variable type allows the value zero.
Otherwise, it initializes them with random values.

Dependencies
You cannot use this option if you select:

• Verification Mode > Verify module

Command-Line Information
Parameter: -init-stubbing-vars-random | -init-stubbing-vars-zero-or-random
Example: polyspace-ada -sources filename -init-stubbing-vars-random

See Also
Verify module

Topics
“Specify Analysis Options”
“Choosing Contextual Verification Options”

1 Option Descriptions

1-30

Continue after noninitialized variables
Specify that verification must continue past a red noninitialized variable

Description
Specify that verification must continue past a red noninitialized variable.

Settings
Default: Off

 On
Polyspace continues verification even after it detects a red noninitialized variable.

procedure Main is
 I,T,No: Integer;
 begin
 if (No = 0) -- red NIV, with or without option
 then
 I := 1/I; -- red NIV with option, gray otherwise
 end if;
 if (T = 0) -- red NIV with option, gray otherwise
 then
 I := 12312409 /120;
 end if;
end Main;

 Off
Polyspace does not continue verification after it detects the first red noninitialized variable.
Polyspace declares the subsequent code as unreachable.

Tips
Use this option for first runs of the verification. This option causes loss of precision.

Command-Line Information
Parameter:-continue-with-all-niv

See Also
Continue with noninitialized in/out parameters | Initialization of
uninitialized global variables | Non-Initialized Local Variable | Verify module

Topics
“Specify Analysis Options”

 Continue after noninitialized variables

1-31

Continue with noninitialized in/out parameters
Specify that verification must continue even if in and in out parameters of a procedure are not
initialized

Description
Specify that verification must continue even if in and in out parameters of a procedure are not
initialized.

Settings
Default: Off

 On
Polyspace continues verification even after it detects a red noninitialized parameter.
procedure test(x : in out Integer) is
 begin
 x := 10;
 end
procedure main is
 T : integer;
 begin
 test(T); -- red NIV on T with or without the option
 T := T + 1; -- green with -continue-with-in-out-niv, gray otherwise
 end Main;

 Off
Polyspace does not continue verification after it detects the first red noninitialized parameter.
Polyspace declares the subsequent code as unreachable.

Command-Line Information
Parameter:-continue-with-in-out-niv

See Also
Continue after noninitialized variables | Non-Initialized Local Variable |
Constraint setup

Topics
“Specify Analysis Options”

1 Option Descriptions

1-32

Treat import as nonvolatile
Specify that Polyspace must not consider variables imported through a pragma Import as volatile
variables

Description
Specify that Polyspace must not consider variables imported through a pragma Import as volatile
variables. pragma Import is used to import variables from code written in a language other than
Ada.

Settings
Default: Off

 On
Polyspace considers the imported variables as volatile.

 Off
Polyspace does not consider the imported variables as volatile.

Command-Line Information
Parameter:-import-are-not-volatile

See Also
Treat export as nonvolatile

Topics
“Specify Analysis Options”
“Volatile Variables” on page 3-8
“Stubbing Overview”

 Treat import as nonvolatile

1-33

Treat export as nonvolatile
Specify that Polyspace should not consider variables exported through a pragma Export as volatile
variables

Description
Specify that Polyspace should not consider variables exported through a pragma Export as volatile
variables. pragma Export is used to export variables to code written in a language other than Ada.

Settings
Default: Off

 On
Polyspace considers the exported variables as volatile.

 Off
Polyspace does not consider the exported variables as volatile.

Command-Line Information
Parameter: export-are-not-volatile

See Also
Treat import as nonvolatile

Topics
“Specify Analysis Options”
“Volatile Variables” on page 3-8
“Stubbing Overview”

1 Option Descriptions

1-34

Precision level
Specify the precision level that the verification must use

Description
Specify the precision level that the verification must use. Higher precision leads to greater number of
proven results but also requires more verification time. Each precision level corresponds to a
different algorithm used for verification.

Settings
Default: 2

0
This option corresponds to a static interval verification.

1
This option corresponds to a complex polyhedron model of domain values.

2
This option corresponds to more complex algorithms closely modelling domain values. The
algorithms combine both complex polyhedrons and integer lattices.

Command-Line Information
Parameter: -O
Value: 0 | 1 | 2
Default: -O2
Example: polyspace-ada -sources file_name -O1

See Also
Verification level

Topics
“Specify Analysis Options”
“Improve Verification Precision”

 Precision level

1-35

Verification level
Specify the number of times the Polyspace verification process runs on your source code

Description
Specify the number of times the Polyspace verification process runs on your source code. Each run
can lead to greater number of proven results but also requires more verification time

Settings
Default: Software Safety Analysis level 2

Source Compliance Checking
The verification process checks for compliance of source code.

Software Safety Analysis level 0
The verification process runs once on your code.

Software Safety Analysis level 1
The verification process runs twice on your code.

Software Safety Analysis level 2
The verification process runs thrice on your code.

Software Safety Analysis level 3
The verification process runs four times on your code.

Software Safety Analysis level 4
The verification process runs five times on your code.

other
If you use this option, Polyspace verification will make 20 passes unless you stop it manually.

Command-Line Information
Parameter: -to
Value: compile | pass0 |pass1 | pass2 | pass3 | pass4 | other
Example: polyspace-ada -sources filename -to pass2

See Also
Precision level

Topics
“Improve Verification Precision”

1 Option Descriptions

1-36

Verification time limit
Specify a time limit for the verification

Description
Specify a time limit for the verification in hours. If the verification does not complete within that limit,
it stops.

Settings
Enter the time in hours. For fractions of an hour, specify decimal form.

Command-Line Information
Parameter: -timeout
Value: Time in hours
Example: polyspace-ada -sources file_name -timeout 5.75

See Also
Topics
“Specify Analysis Options”
“Improve Verification Precision”

 Verification time limit

1-37

Sensitivity context
Specify that the software must store call context information during verification

Description
Specify that the software must store call context information during verification. If a line of code in a
procedure causes a red and green check for two different calls of the procedure, both checks will be
stored.

Settings
Default: auto

none
The software does not store call context information for procedures.

auto
The software stores call context information for checks in the following procedures:

• Procedures that form the leaves of the call tree. These procedures are called by other
procedures, but do not call procedures themselves.

• Small procedures. The software uses an internal threshold to determine whether a procedure
is small.

• Procedures that are called more than once.

custom

The software stores call context information for procedures that you specify. Click to enter
the name of a procedure.

Command-Line Information
Parameter: -context-sensitivity
Value: auto | none | -custom procedure_name
Example: polyspace-ada -sources file_name -context-sensitivity auto

See Also
Topics
“Specify Analysis Options”
“Improve Verification Precision”

1 Option Descriptions

1-38

Improve precision of interprocedural analysis
Propagate greater information about function arguments into the called function

Description
Use this option to propagate greater information about function arguments into the called function.

Settings
Default: Off

Enter 0 to turn off this option and 1 to turn it on. Turning on this option leads to greater number of
proven results, but also increases verification time.

Tips
• Using this option, you can prove maximum possible number of results when the Verification level

is set to Software Safety Analysis level 2. Therefore, you can save on the number of
passes that the verification takes on your code.

• Using this option, you can increase the verification time enormously within a certain pass.
Therefore, use this option only when you have less than 1000 lines of code.

Command-Line Information
Parameter: -path-sensitivity-delta
Value: 0 | 1
Example: polyspace-ada -sources filename -path-sensitivity-delta 1

See Also
Topics
“Specify Analysis Options”
“Improve Verification Precision”

 Improve precision of interprocedural analysis

1-39

Specific precision
Specify source files that you want to verify at a precision level higher than that for the entire
verification

Description
Specify source files that you want to verify at a Precision level higher than that for the entire
verification.

Settings
Default: All files are verified with the precision you specified using Precision > Precision level.

Click to enter the name of a file and the corresponding precision level.

Command-Line Information
Parameter: -modules-precision
Value: File name and corresponding precision separated by :
Example: polyspace-ada -sources file_name -O1 -modules-precision My_File.c:02

See Also
Precision level

Topics
“Specify Analysis Options”
“Improve Verification Precision”

1 Option Descriptions

1-40

Max size of global array variables
Specify a threshold for global array size

Description
Specify a threshold for global array size.

• For array sizes less than or equal to this threshold, Polyspace treats each array element as a
separate variable. Each array element appears as an individual variable on the Variable Access
pane.

• For array sizes greater than this threshold, Polyspace treats the array as one variable.

Increasing the threshold increases the verification time.

Settings
Default: 3

Enter an integer in the field provided.

Command-Line Information
Parameter: -array-expansion-size
Value: Threshold value
Example: polyspace-ada -sources filename -O1 -array-expansion-size 8

See Also
Expansion limit for a structured variable | Variables to expand

Topics
“Specify Analysis Options”
“Expansion of Sizes” on page 3-6

 Max size of global array variables

1-41

Variables to expand
Specify names of record variables that Polyspace must split into its components during verification

Description
Specify names of record variables that Polyspace must split into its components during verification.
Each component appears as an individual variable on the Variable Access pane.

Settings
Default None

Click to add a field. Enter the record variable name.

Dependencies
Specify a value for the option Expansion limit for a structured variable. This value applies to
record variables named by the option Variables to expand.

Command-Line Information
Parameter: -variables-to-expand
Value: Variable name
Example: polyspace-ada -sources filename -variables-to-expand
pkg.rec,pkg2.recF -variable-expansion-depth 4

See Also
Expansion limit for a structured variable | Max size of global array variables

Topics
“Specify Analysis Options”
“Expansion of Sizes” on page 3-6

1 Option Descriptions

1-42

Expansion limit for a structured variable
Specify a limit to the depth of analysis for nested records

Description
Specify a limit to the depth of analysis for nested records.

Settings
Default: 1

Enter an integer. This integer specifies a limit to the depth of analysis in nested records.

For instance, consider the following code:

Package foo is
 Type Internal is
 Record
 FieldI : Integer;
 FieldII : Integer;
 End Record ;
 Type External is
 Record
 Data : Internal ;
 FieldE : Integer;
 End Record ;
 myVar : External ;
End foo;

In this code, if you specify the limit as:

• 1: foo.myVar.FieldE and foo.myVar.Data are treated as individual variables
• 2: foo.myVar.FieldE, foo.myVar.Data.FieldI and foo.myVar.Data.FieldII are treated

as individual variables.

Dependencies
Specify record names using the option Variables to expand. The value specified using Expansion
limit for a structured variable applies to these records.

Command-Line Information
Parameter: -variable-expansion-depth
Value: Integer
Example: polyspace-ada -sources filename -variables-to-expand
pkg.rec,pkg2.recF -variable-expansion-depth 4

See Also
Variables to expand | Max size of global array variables

 Expansion limit for a structured variable

1-43

Topics
“Specify Analysis Options”
“Expansion of Sizes” on page 3-6

1 Option Descriptions

1-44

Generate report
Specify whether to generate a report during the analysis

Description
Specify whether to generate a report during the analysis. Depending on the format you specify, you
can view this report using an external software. For example, if you specify the format PDF, you can
view the report in a pdf reader.

Settings
Default: Off

 On
Polyspace generates an analysis report using the template and format you specify.

 Off
Polyspace does not generate an analysis report. You can still view your results in the Polyspace
interface.

Tips
• To generate a report after an analysis is complete, select Reporting > Run Report. Alternatively,

at the command line, use the command polyspace-report-generator with the options -
template and -format.

Command-Line Information
There is no command-line option to solely turn on the report generator. However, using the options -
report-template for template and -report-output-format for output format automatically
turns on the report generator.

See Also
Topics
“Specify Analysis Options”
“Generate Report”

 Generate report

1-45

Report template
Specify template for generating analysis report

Description
Specify template for generating analysis report.

The report templates are available in the folder MATLAB_Install\toolbox\polyspace\psrptgen
\templates\. Here, MATLAB_Install is the MATLAB installation folder.

Settings
Default: Developer

CodeMetrics
The report contains a summary of code metrics, followed by the complete metrics for an
application.

Developer
The report lists information useful to developers, including:

• Summary of results
• Coding rule violations
• List of proven run-time errors or red checks
• List of unproven run-time errors or orange checks
• List of unreachable procedures or gray checks

The report also contains the Polyspace configuration settings for the analysis.
DeveloperReview

The report lists the same information as the Developer report. However, the reviewed results
are sorted by severity and status, and unreviewed results are sorted by file location.

Developer_withGreenChecks
The report lists the same information as the Developer report. In addition, the report lists code
proven to be error-free or green checks.

Quality
The report lists information useful to quality engineers, including:

• Summary of results
• Statistics about the code
• Graphs showing distributions of checks per file

The report also contains the Polyspace configuration settings for the analysis.

Dependencies
This option is enabled only if you select the Generate report box.

1 Option Descriptions

1-46

Command-Line Information
Parameter: -report-template
Value: Full path to template.rpt
Example: polyspace-ada -sources file_name -report-template -report-template
matlabroot\toolbox\polyspace\psrptgen\templates\Developer.rpt

See Also
Topics
“Specify Analysis Options”
“Generate Report”
“Customize Report Templates”

 Report template

1-47

Output format
Specify output format of generated report

Description
Specify output format of generated report.

Settings
Default: Word

HTML
Generate report in .html format

PDF
Generate report in .pdf format

Word
Generate report in .doc format. Not available on UNIX platforms.

Tips
• You must have Microsoft® Office installed to view RTF format reports containing graphics, such as

the Quality report.

Dependencies
This option is enabled only if you select the Generate report box.

Command-Line Information
Parameter: -report-output-format
Value: HTML | PDF | Word
Default: Word
Example: polyspace-ada -sources file_name -report-output-format pdf

See Also
Topics
“Specify Analysis Options”
“Generate Report”

1 Option Descriptions

1-48

Disable code metrics generation
Specify that Polyspace must not generate code complexity metrics for your source code

Description
Specify that Polyspace must not generate code complexity metrics for your source code. For more
information, see “Code Metrics”.

Settings
Default: Off

 On
Polyspace does not generate code complexity metrics for your source code.

 Off
Polyspace generates code complexity metrics for your source code. After verification, your results
contain these code complexity metrics.

Command-Line Information
Parameter: -no-code-metrics
Example: polyspace-ada -sources file_name -no-code-metrics

 Disable code metrics generation

1-49

Command/script to apply after the end of the code
verification
Specify a command or script to be executed after the verification

Description
Specify a command or script to be executed after the verification.

Settings
No Default

Enter full path to the command or script, or click to navigate to the location of the command or
script. For example, you can enter the path to a script that sends an email. After the verification, this
script will be executed.

Command-Line Information
Parameter: -post-analysis
Value: Full path to script
Example: polyspace-ada -sources file_name -post-analysis-command `pwd`/
send_email

See Also
Topics
“Specify Analysis Options”

1 Option Descriptions

1-50

Other
Specify extra Polyspace options

Description
Specify extra Polyspace options.

Settings
No Default

• Add expert option flags to verification. Place the option -extra-flags before each flag
(parameter or value), for example:

-extra-flags -param1 -extra-flags -param2 -extra-flags 10

and

-ada95-extra-flags -param1 -ada95-extra-flags -param2
• Polyspace supplies these flags, which depend on your verification requirements.
• Use ada95-extra-flags for Ada95 only.

Command-Line Information
Parameter: extra-flags | ada95-extra-flags
Value: Supplied by Polyspace but depend on your requirements

See Also
“Polyspace Software Administration”

 Other

1-51

-ada-include-dir
Specify a folder that contains include files required for compiling your sources

Description
-ada-include-dir folder specifies a folder that contains include files required for compiling
your sources. You can specify only one folder for each instance of -ada-include-dir. However, you
can specify this option multiple times.

For instance, to specify two include folders com/inc and com/sys/inc, use the following syntax:

polyspace-ada -ada-include-dir com/inc -ada-include-dir com/sys/inc

1 Option Descriptions

1-52

-author
Specify author of verification

Description
-author authorName specifies author of verification.

Examples
Default: user ID

Example Shell Script Entry:

polyspace-ada -author "A. Tester"

 -author

1-53

-server
Specify server name and port number

Description
-server server_name_or_ip[:port_number] specifies a server name and port number for
remote analysis.

Using polyspace-remote-ada [-server [name or IP address][:<port number>]] allows
you to send a verification to a specific or referenced Polyspace server.

Note If you do not specify the option -server, the default server referenced in the Polyspace-
Launcher.prf configuration file is used as the server.

When you use the -server option in the batch launching command, you must specify the name or IP
address and a port number. If the port number does not exist, the 12427 value is used as the default.

Examples
polyspace-remote-ada -desktop -server 192.168.1.124:12400 ...

polyspace-remote-ada ...

polyspace-remote-ada -server Bergeron ...

1 Option Descriptions

1-54

-help
Display list of analysis options

Description
-h or -help displays simple help in the shell window that provides information on the analysis
options.

Examples
polyspace-ada -h

polyspace-ada -help

 -help

1-55

-version
Display Polyspace version number

Description
-v or -version displays the Polyspace version number.

Examples
polyspace-ada -v

produces an output like the following:

Polyspace r2011b
Copyright (c) 1999-2011 The Mathworks, Inc.

1 Option Descriptions

1-56

-sources
Specify list of source files to analyze

Description
-sources file1[,file2[,...]] specifies the list of source files you want to analyze. You can use
standard UNIX® wildcards with this option to specify your sources. The source files are compiled in
the order in which they are specified.

Examples
To analyze the files source1.ada and source2.ada, use the following syntax:

polyspace-ada -sources source1.ada,source2.ada

 -sources

1-57

-sources-list-file
Specify a text file with names of sources to analyze

Description
-sources-list-file file_name is available only in batch mode.

Here, file_name specifies:

• The name of one file
• The absolute or relative path of the file

Examples
 polyspace-ada -sources-list-file "C:\Analysis\files.txt"

 polyspace-ada -sources-list-file "files.txt"

1 Option Descriptions

1-58

-from
Specify starting point of verification

Description
Specify starting point of verification.

Settings
• Use with the to option.
• Use only on a verification that you have run partially, to specify the restart point of the
verification. For example, if you have previously run a verification to Software Safety
Analysis level 1 (pass1), you can restart the verification at this point. You do not have to run
the verification from scratch.

• Use only for client-based verification (server-based verification starts from scratch).
• Use only for restarting a verification launched with the option keep-all-files (unless you

restart from scratch).
• You cannot use this option if you modify the source code between verifications.

Examples
Parameter: from
Type: string
Value: scratch | compile | pass0 |pass1 | pass2 | pass3 | pass4 | other
Default: scratch
Shell script example: polyspace-ada -from pass0

 -from

1-59

-report-output-name
Specify name of verification report file

Description
Specify name of verification report file.

Settings
Default: Prog_TemplateName.Format where:

• Prog is the argument of the prog option
• TemplateName is the name of the report template specified by the report-template option
• Format is the file extension for the format specified by the report-output-format option.

Examples
Parameter: report-output-name
Type: string
Default: Prog_TemplateName.Format

1 Option Descriptions

1-60

-import-comments
Import coding rule and run-time check comments and justifications from specified folder at the end of
verification

Description
Use option to automatically import coding rule and run-time check comments and justifications from
specified folder at the end of verification.

Examples
Default:

Disabled

Shell script examples: :

polyspace-ada -version 1.3 -import-comments C:\PolyspaceResults\1.2

 -import-comments

1-61

-tmp-dir-in-results-dir
Use a subfolder of the results folder to store temporary files

Description
If you specify the new option -tmp-dir-in-results-dir, Polyspace does not use the
standard /tmp or C:\Temp folder to store temporary files. Instead, Polyspace uses a subfolder of the
results folder. If the results folder is mounted on a network drive, this action may reduce processing
speed . Use this option only when the temporary folder partition is not large enough and
troubleshooting is required.

Examples
Default:

Disabled

Example Shell Script Entry:

polyspace-ada -tmp-dir-in-results-dir -results-dir C:\Polyspace\Results

1 Option Descriptions

1-62

-max-processes
Specify the maximum number of processors that you want the verification to use

Description
-max-processes num specifies the maximum number of processes that you want the analysis to
use. On a multicore system, the software parallelizes the analysis and creates the specified number of
processes to speed up the analysis. The valid range of num is 1 to 128.

Unless you specify this option, the verification uses up to four processors. If you have fewer than four
processors, the verification uses the maximum available number. To increase or restrict the number
of processors, use this option.

To use this option effectively, determine the number of processors available for use. If the number of
processes you create is greater than the number of processors available, the analysis does not benefit
from the parallelization. Check the system information in your operating system. When you start a
verification, a message states the number of logical processors detected on your system.

Settings
Default: 4

• Valid range is 1 to 128
• To disable parallel processing, set to 1.

Tips
You must have at least 4 GB of RAM per processor for analysis. For instance, if your machine has 16
GB of RAM, do not use this option to specify more than four processors.

Examples
Parameter: -max-processes
Value: Integer between 1 and 128
Default: 4
Shell script example: polyspace-ada -max-processes 1

 -max-processes

1-63

-generate-launching-script-for
Extracts information from Polyspace project file created in user interface for verification from the
command line.

Description
Extracts information from the project file so that you can run a verification from the command-line.
When you run this command, for each configuration and each module in your project, a folder is
created containing the following files:

• source_command.txt — List of source files for the -source-files option.
• options_command.txt — List of the analysis options for the -options-file option.
• temporal_exclusions.txt — List of temporal exclusions, generated only if you specify the

Temporally exclusive tasks option.
• .polyspace_conf.psprj — A copy of the project file used to generate the scripting files.
• launchingCommand.sh (UNIX) or launchingCommand.bat (DOS) — shell script that calls the

correct commands. The script also contains any options that cannot be given to the -options-
file command, such as -server or -add-to-results-repository. You can give this file
additional analysis options as parameters.

Examples
This option is used with the desktop binary polyspace.

Parameter: -generate-launching-script-for
Value: psprj project file
Shell script example: polyspace -generate-launching-script-for Demo_Ada.psprj

1 Option Descriptions

1-64

-list-all-values
Display valid option arguments for a given command-line option

Syntax
-list-all-values option

Description
-list-all-values option displays all the valid option arguments for the command-line option
option.

Examples
Display the valid option arguments for option -sources-encoding:
Parameter: -list-all-values
Value: option
Shell script example: polyspace-ada -list-all-values -sources-encoding

See Also
Topics
“Run Verification”

 -list-all-values

1-65

-xml-annotations-description
Apply custom code annotations to your Polyspace analysis results

Description
-xml-annotations-description file_path uses the annotation syntax defined in the XML file
located in file_path to interpret code comments in your source files. You can use the XML file to
specify an annotation syntax and map it to the Polyspace annotation syntax. When you run an analysis
using this option, you can justify and hide results with annotations that use your syntax. If you run
Polyspace from the command line, file_path is the absolute path or path relative to the folder from
which you run the command. If you run Polyspace from the user interface, file_path is the absolute
path.

If you are running an analysis from the user interface, you can enter this option in the Other field,
under the Advanced Settings node on the Configuration pane. See Other (Polyspace Code
Prover).

If you have existing annotations from previous code reviews, you can import these annotations to
Polyspace. You do not have to review and justify results you have already annotated. Similarly, if your
code comments must adhere to a specific format, you can map and import that format to Polyspace.

Examples
Parameter: -xml-annotations-description
Value: path\to\file1.xml
Shell script example: polyspace-ada -sources source_path -xml-annotations-
description C:\path\to\file1.xml

See Also
Topics
“Justify Results Through Code Annotations”
“Define Custom Annotation Format”

1 Option Descriptions

1-66

polyspace-access
(DOS/UNIX) Manage upload or export of Polyspace results from the Polyspace Access web interface

Syntax
polyspace-access -host hostname [configuration options] -create-project
projectFolder

polyspace-access -host hostname [configuration options] -upload
pathToFolderOrZipFile [upload options]
polyspace-access -host hostname [configuration options] -export
findingsToExport -output filePath [export options]
polyspace-access -host hostname [configuration options] -download
findingsToDownload -output-folder-path folderPath

polyspace-access -host hostname [configuration options] -set-unassigned-
findings findingsToAssign -owner userToAssign -source-contains pattern [set
unassigned findings options]

polyspace-access -host hostname [configuration options] -list-project [
findingsPath]

polyspace-access -host hostname [configuration options] -set-role role -user
username -project-path projectFolderOrFindingsPath
polyspace-access -host hostname [configuration options] -unset-role -user
username -project-path projectFolderOrFindingsPath

polyspace-access -encrypt-password

polyspace-access -generate-migration-commands metrics_dir -output-folder-path
dir [generate migration commands options]
polyspace-access -host hostname [configuration options] -migrate -option-
file-path dir [-dryrun]

Description
polyspace-access -host hostname [configuration options] -create-project
projectFolder creates a project folder in the Polyspace Access web interface. The folder can be at
the top of the project hierarchy or a subfolder under an existing project folder.

polyspace-access -host hostname [configuration options] -upload
pathToFolderOrZipFile [upload options] uploads Polyspace results from a folder or a zipped
file to the Polyspace Access database. Use the upload options to specify a project folder other
than public.

polyspace-access -host hostname [configuration options] -export
findingsToExport -output filePath [export options] exports project results from a
project in the Polyspace Access database to a text file whose location you specify with filePath. You
specify the project using either the full path in Polyspace Access or the run ID. Use this command to
export findings to other tools that you use for custom reports. To get the paths to projects and their
last run IDs, use polyspace-access with the -list-project command.

 polyspace-access

1-67

polyspace-access -host hostname [configuration options] -download
findingsToDownload -output-folder-path folderPath downloads results from Polyspace
Access project findingsToDownload to a folder whose location you specify with folderPath. You
specify the project using either the full path in Polyspace Access or the run ID.

Use this command as part of the workflow to merge review information between projects, or to create
a baseline for subsequent Polyspace analyses. To create a baseline for Polyspace a You Code results at
the command-line, see Baseline Polyspace as You Code Results on Command Line in the Polyspace
Bug Finder Access documentation. To get the paths to projects and their last run IDs, use
polyspace-access with the -list-project command.

You cannot open the results that you download with this command in the Polyspace desktop interface
or the Polyspace as You Code IDE extensions.

polyspace-access -host hostname [configuration options] -set-unassigned-
findings findingsToAssign -owner userToAssign -source-contains pattern [set
unassigned findings options] assigns owners to unassigned results in a project in the
Polyspace Access database. You specify the project using either the full path in Polyspace Access or
the run ID. Use the set unassigned findings options to assign findings from different source
files or different groups of source files to different owners. To get the paths to projects and their last
run IDs, use polyspace-access with the -list-project command.

polyspace-access -host hostname [configuration options] -list-project [
findingsPath] without the optional argument findingsPath lists the paths to all projects in the
Polyspace Access database and their last run IDs. If you specify the full path to a project with the
argument findingsPath, the command lists the last run ID.

polyspace-access -host hostname [configuration options] -set-role role -user
username -project-path projectFolderOrFindingsPath assigns a role role to the user
specified by username for the specified project or project folder. A user role set for a project folder
applies to all project findings under that folder. You specify the project using either the full path in
Polyspace Access or the last run ID. To get the paths to projects and their last run IDs, use
polyspace-access command with the -list-project command.

polyspace-access -host hostname [configuration options] -unset-role -user
username -project-path projectFolderOrFindingsPath removes any role previously
assigned to username for the specified project or project folder. You specify the project using either
the full path in Polyspace Access or the last run ID. To get the paths to projects and their last run IDs,
use polyspace-access with the -list-project command.

polyspace-access -encrypt-password encrypts the password you use to log into Polyspace
Access. Use the output of this command as the argument of the -encrypted-password option when
you write automation scripts to interact with Polyspace Access.

polyspace-access -generate-migration-commands metrics_dir -output-folder-path
dir [generate migration commands options] generates scripts to migrate projects from the
path metrics_dir in Polyspace Metrics to Polyspace Access. The command stores the scripts in
dir. To specify which project findings to migrate, use generate migration commands options.

polyspace-access -host hostname [configuration options] -migrate -option-
file-path dir [-dryrun] migrates projects from Polyspace Metrics to Polyspace Access using
the scripts generated with the -generate-migration-commands command. To view which projects
are migrated without actually migrating the projects, use the -dryrun option.

1 Option Descriptions

1-68

Examples

Encrypt Password and Set Configuration Options

Polyspace Access requires login credentials. You can enter them at the command line when you
execute a command, or you can generate an encrypted password that you use in automation scripts.

To encrypt your password, use the -encrypt-password command and enter your Polyspace Access
credentials. The command uses the user name and password you enter to generate an encrypted
password.

polyspace-access -encrypt-password
login: jsmith
password:
CRYPTED_PASSWORD KEAGKAMJMCOPLFKPKOHOJNDJCBACFJBL
Command Completed

Store the login and encrypted password in a credentials file and restrict read and write permission on
this file. Open a text editor, copy these two lines in the editor, then save the file as
myCredentials.txt for example.

 -login jsmith
 -encrypted-password KEAGKAMJMCOPLFKPKOHOJNDJCBACFJBL

To restrict the file permissions, right-click the file and select the Permissions tab on Linux® or the
Security tab on Windows.

If you manage your analysis findings through automated scripts, create a variable to store the
connection configuration and login credentials. Use this variable in your script, or at the command
line to avoid entering your credentials when you execute a command.
set LOGIN=-host my-company-server -port 1234 -credentials-file myCredentials.txt

polyspace-access %LOGIN% -create-project myProject

Create a Project Folder with Restricted Access and Upload to Folder

Suppose that you want to upload a set of findings to Polyspace Access and authorize only some team
members to view these findings.

Create a project folder Restricted at the top of the project hierarchy.

polyspace-access -host my-company-server -port 1234 ^
-create-project Restricted

Set user roles for users aUser and bUser, authorizing them to access the project folder as
contributors.

polyspace-access -host my-company-server ^
-port 1234 -set-role contributor ^
-user aUser -user bUser -project Restricted

Aside from the creator of the project folder and the previous two users, no other user can view or
access any findings uploaded to Restricted.

Upload project findings under Restricted.

 polyspace-access

1-69

polyspace-access -host my-company-server -port 1234 ^
-upload C:\Polyspace_Workspace\projectName\Module_1 ^
-parent-project Restricted

The uploaded findings are stored under Restricted/projectName.

Merge Review Information Between Polyspace Access Projects

If you review findings in a Polyspace Access project and you reuse the source code that contains
those findings in another project, you can merge the review information between the projects. You do
not need to review the findings again in the other project.

For instance, suppose your team has reviewed all findings for file customClass.cpp in Polyspace
Access project components/oldProject (BF). If you reuse customClass.cpp in a different
project, you can merge the Status, Severity, and comments from components/oldProject (BF)
into the other project.

Download results for project components/oldProject (BF) from the Polyspace Access database.

DOS command:
polyspace-access.exe -host my-company-server ^
 -download "components/oldProject (BF)" ^
 -output-folder-path downloadedResults

Unix command:
polyspace-access -host my-company-server \
 -download "components/oldProject (BF)" \
 -output-folder-path downloadedResults

If the output folder path that you specify with -output-folder-path already exists, it must be
empty. The command downloads the latest run of project components/oldProject (BF) to folder
downloadedResults.

To obtain the project path, right-click the project from the Project Explorer in the Polyspace Access
interface, or use the -list-project option.

Run an analysis on the new project and use the option -import-comments to import the review
information that you downloaded in downloadedResults.
#DOS command:
polyspace-bug-finder-server.exe -sources customClass.cpp,... ^
 -options-file "D:\utils\polyspace\options.opts ^
 -import-comments downloadedResults ^
 -results-dir newResults

#Unix
polyspace-bug-finder-server -sources customClass.cpp,... \
 -options-file "local/utils/polyspace/options.opts ^
 -import-comments downloadedResults \
 -results-dir newResults

Once the analysis completes, Polyspace merges the Status, Severity, and comments from
components/oldProject (BF) into the new analysis results. If there are conflicts between the
review information from the downloaded results and from the new results, Polyspace retains the
review information from the new results.

To merge the review information without running an analysis or to overwrite the review information
from the new results in case of conflicts, see polyspace-comments-import.

1 Option Descriptions

1-70

If you store the analysis results from the new project in Polyspace Access, for instance in project
components/newProject (BF), upload the results with the merged review information to
Polyspace Access.

DOS command:
polyspace-access.exe -host my-company-server ^
 -upload newResults ^
 -parent-project "components/newProject (BF)"

Unix command:
polyspace-access -host my-company-server \
 -upload newResults \
 -parent-project "components/newProject (BF)"

Assign Results to Component Owners and Export Assigned Results

If you follow a component-based development approach, you can assign analysis findings by
component to their respective owners.

Get a list of projects currently stored on the Polyspace Access database. The command outputs a list
of project findings paths and their last run ID.
polyspace-access -host my-company-server -list-project

Connecting to https://my-company-server:9443
Connecting as jsmith

Get project list with the last Run Id
Restricted/Code_Prover_Example (Code Prover) RUN_ID 14
multimodule/vxWorks_demo (Code Prover) RUN_ID 16
public/Bug_Finder_Example (Bug Finder) RUN_ID 24
public/CP/Code_Prover_Example (Polyspace Code Prover) RUN_ID 8
public/Polyspace (Code Prover) RUN_ID 28
Command Completed

Assign all red and orange run-time error findings to the owner of all the files in Component_A of
project vxWorks_demo. Perform the same assignment for the owner of Component_B. To specify the
vxWorks_demo project, use the run ID.

polyspace-access -host my-company-server ^
-set-unassigned-findings 16 ^
-owner A_owner -source-contains Component_A ^
-owner B_owner -source-contains Component_B ^
-rte Red -rte Orange

-source-contains Component_A matches all files with a file path that contains Component_A.

-source-contains Component_B matches all files with a file path that contains Component_B,
but excludes files with a file path that contains Component_A.

After you assign findings, export the findings and generate .csv files for each owner containing the
findings assigned to them.

polyspace-access -host my-company-server ^
-export 16 ^
-output C:\Polyspace_Workspace\myResults.csv ^
-output-per-owner

 polyspace-access

1-71

The command generates file myResults.csv containing all findings from the project with run ID 16.
The command also generates files myResutls.csv.A_owner.csv and
myResults.csv.B_owner.csv on the same file path.

Migrate Projects from Metrics to Polyspace Access

If you have projects stored on a Polyspace Metrics server, you can migrate them to the Polyspace
Access database. Log in to your Metrics server to complete this operation.

Generate migration scripts for the projects you want to migrate. Specify the folder path of the
location where the projects are stored, for example C:\Users\jsmith\AppData\Roaming
\Polyspace_RLDatas\results-repository
polyspace-access -generate-migration-commands ^
C:\Users\jsmith\AppData\Roaming\Polyspace_RLDatas\results-repository ^
-output-folder-path C:\Polyspace_Workspace\toMigrate -project-date-after 2017-06

The command generates migration scripts for all projects in the specified metrics folder that were
uploaded on or after June 2017. The scripts are stored in folder C:\Polyspace_Workspace
\toMigrate.

Use the -dryrun option to check which projects will be migrated.

polyspace-access -host my-company-server ^
-migrate -option-file-path ^
C:\Polyspace_Workspace\toMigrate -dryrun

The command output contains a list of projects. Inspect it to ensure that you are migrating the
correct projects.

To perform the migration, rerun the last command without the -dryrun option.

Input Arguments
Connect and Login

hostname — Polyspace Access machine host name
string

hostname corresponds to the host name that you specify in the URL of the Polyspace Access
interface, for example https://hostname:port/metrics/index.html. If you are unsure about
which host name to use, contact your Polyspace Access administrator. The default host name is
localhost. You must specify a host name with all polyspace-access commands, except the -
generate-migration-commands and -encrypt-password commands .
Example: -host my-company-server

configuration options — Options to configure connection to Polyspace Access
string

Options to specify connection configuration and login credentials.

Configuration Options

1 Option Descriptions

1-72

Option Description
-port portNumber portNumber corresponds to the port number that you specify in the

URL of the Polyspace Access interface, for example https://
hostname:portNumber/metrics/index.html. If you are unsure
about which port number to use, contact your Polyspace Access
administrator. The default port number is 9443.

-protocol http |
https

HTTP protocol used to access Polyspace Access. The default protocol is
https.

-credentials-file
file_path

Full path to the text file where you store your login credentials. Use this
option if, for instance, you use a command that requires your Polyspace
Access credentials in a script but you do not want to store your
credentials in that script. While the script runs, someone inspecting
currently running processes cannot see your credentials.

You can store only one set of credentials in the file, either as -login
and -encrypted-password entries on separate lines, for instance:

-login jsmith
-encrypted-password LAMMMEACDMKEFELKMNDCONEAPECEEKPL

or as an -api-key entry:

-api-key keyValue123

Make sure that you restrict the read and write permissions on the file
where you store your credentials. For example, to restrict read and
write permissions on file login.txt in Linux, use this command:

chmod go-rwx login.txt

-api-key keyValue API key you use as a login credential instead of providing your login and
encrypted password. To assign an API key to a user, see “Configure User
Manager” (Polyspace Code Prover Access) or contact your Polyspace
Access administrator.

Use the API key if, for instance, you use a command that requires your
Polyspace Access login credentials as part of an automation script with a
CI tool like Jenkins. If a user updates his or her password, you do not
need to update the API key associated with that user in your scripts.

It is recommended that you store the API key in a file and pass that file
to the command by using -credentials-file.

-login username

-encryted-password
ENCRYPTED_PASSWD

Login credentials you use to interact with Polyspace Access. The
argument of -encrypted-password is the output of the -encrypt-
password command.

If you do not use these two options, you are prompted to enter your
credentials at the command line, unless you use -api-key.

Miscellaneous Options

Option Description
-output file_path Full path to the file where you store command outputs.

 polyspace-access

1-73

Option Description
-tmp-dir folder_path Folder path where you store temporary files generated by the

polyspace-access commands. The default folder path is tmp/
ps_results_server on Linux and C:/Users/%username%/
AppData/Local/Temp/ps_results_server on Windows.

-log File path where you store the command output log. By default the
command does not generate a log file.

-h Display the help information for polyspace-access or one of its
commands.

Create New Folder

projectFolder — Name of project folder
string

Project folder path specified as a string. If the name includes spaces, use double quotes. Specify the
full path to folders nested under a parent folder.

If your folder path involves a folder that does not already exist, the folder is created.
Example: -create-project topFolder
Example: -create-project "topFolder/subFolder/subSubFolder"

Upload Results

pathToFolderOrZipFile — Path to folder or zipped file containing analysis results
string

Folder or zipped file path specified as a string. The folder or zipped file contains analysis results you
want to upload to Polyspace Access. Specify the path of the folder containing the *.psbf, *.pscp, or
*.rte file, or the path of the parent of this folder to upload multiple analysis runs.

For instance, for the Bug Finder results stored in C:\Polyspace_Workspace\myProject
\Module_1\BF_results\ps_results.psbf, specify the path to BF_results or to Module_1. If
the path name includes spaces, use double quotes.
Example: -upload C:\Polyspace_Workspace\myProject\Module_1\BF_results
Example: -upload C:\Polyspace_Workspace\myProject\Module_1\ -project
projectFolder

upload options — Options to specify where to upload results
string

Options to specify path to project folder where you upload results.

Option Description
-parent-project
projectFolder

Path of the parent project folder under which you upload project
findings. If you do not specify a parent project folder, projects are
upload to the public folder.

1 Option Descriptions

1-74

Option Description
-project
projectFolderOrFindi
ngsPath

If the FOLDER you specify for -upload contains only one analysis run,
for instance ps_results.psbf, this option is optional. Use -project
to rename project findings, or omit it to use the project name from your
Polyspace analysis.

If the FOLDER you specify for -upload contains more than one analysis
run, or if you specify the parent folder of the results folder, this option is
mandatory. Use -project to create a project folder under which all the
analysis runs are stored.

Export Results

findingsToExport — Project findings path or run ID
string

Path or run ID of the project findings that you export. Polyspace assigns a unique run ID to each
analysis run you upload. If the path name includes spaces, use double quotes. To get the project
findings path or last run ID, use -list-project.
Example: -export "public/Examples/Bug_Finder_Example (Bug Finder)"
Example: -export 4

filePath — Path to file containing command output
string

Path to the file that stores the output of the command when you specify the -output option. This
option is mandatory with the -export command.
Example: -output C:\Polyspace_Workspace\myResults.txt

export options — Options to specify which findings to export
string

Options to specify where to export findings, and which subset of findings you export. Use these
options to export findings to other tools you use to create custom reports or other custom review
templates.

Option Description
-output file_path File path where you export the findings. This option is mandatory with

the -export command.
-new-findings Export only new findings compared to the previous analysis (previous

upload with the same project name).
-output-per-owner Use this option to generate files that only contain findings assigned to a

particular user. The files are stored on the path you specify with -
output.

-rte color Type of RTE finding to export. Specify All, Red, Gray, Orange, or
Green.

To specify more than one argument, call the option for each argument.
For example, -rte Red -rte Orange.

 polyspace-access

1-75

Option Description
-defects impact Impact of DEFECTS findings to export. Specify All, High, Medium, or

Low.

To specify more than one argument, call the option for each argument.
For example, -defects Medium -defects Low.

-custom-coding-rules Export all custom coding rules findings.
-coding-rules Export all coding rules findings.
-code-metrics Export all code metrics findings.
-global-variables Export all global variables findings.
-review-status
status

Review status of the findings to export. Specify New, Unreviewed,
Unassigned, Toinvestigate, Tofix, Justified,
Noactionplanned, Notadefect, Other, or Annotated.

To specify more than one argument, call the option for each argument.
For example, -review-status Tofix -review-status
Toinvestigate.

-severity severity Severity of the findings to export. Specify All, High, Medium, or Low.

To specify more than one argument, call the option for each argument.
For example, -severity High -severity Low.

-open-findings-for-
sqo sqo_level

Software quality objective or SQO level that must be satisfied. Specify a
number from 1 to 6 for sqo_level. If you specify an SQO level, the
polyspace-access command exports only open findings that must be
fixed or justified to satisfy the requirements of this level.

For more information on the SQO levels, see “Customizing Software
Quality Objectives”. The SQO levels 1 to 6 specify an increasingly
stricter set of requirements defined in terms of Polyspace results. The
requirements are predefined but you can customize them in the
Polyspace Access web interface.

For instance, SQO level 2 in Code Prover requires that you must not
have unjustified red checks. This specification means that if you use -
open-findings-for-sqo with a level higher than 2, all red checks are
exported and must be subsequently fixed or justified. If you want to
impose this requirement in the earlier SQO level 1, you can customize
level 1 in the Polyspace Access web interface.

You can also use a combination of options. For instance, -coding-rules -severity High exports
coding rule violations that have been assigned a status of High in the Polyspace Access web
interface.

Download Results

findingsToDownload — Project findings path or run ID
string

Path or run ID of the project findings that you download. Polyspace assigns a unique run ID to each
analysis run that you upload to Polyspace Access. If the path name includes spaces, use double
quotes. To get the project findings path or latest run ID, use -list-project.

1 Option Descriptions

1-76

When you specify the project path, the command downloads the latest run of that project. To
download an older run, specify the run ID. To obtain the run ID of older runs, in the Polyspace Access
interface, select a project in the Project Explorer, and then click the Current drop-down selection
in the toolstrip to view the available run IDs.
Example: -download "public/Examples/Bug_Finder_Example (Bug Finder)"
Example: -download 5113

folderPath — Path to folder containing downloaded results
string

Path of the folder where you store the downloaded results. If the folder you specify already exists, it
must be empty. This option is mandatory with the -download command.
Example: -output-folder-path C:\Polyspace_Workspace\baseline

Assign Findings

findingsToAssign — Project findings path or run ID
string

Path or run ID of the project findings that you assign to a user. Polyspace assigns a unique run ID to
each analysis run you upload. If the path name includes spaces, use double quotes. To get the project
findings path or last run ID, use -list-project.
Example: -set-unassigned-findings "public/Examples/Bug_Finder_Example (Bug
Finder)"

Example: -set-unassigned-findings 4

userToAssign — Polyspace Access user name
string

User name of user you assign as owner of unassigned findings. To assign multiple owners, call the
option for each user.

Each call to -owner must be paired with a call to -source-contains.
Example: -user jsmith

pattern — Pattern to match against file path
string

Pattern to match against file path of project source files. To match file paths for all source files, use -
source-contains /.

Enter a substring from the file path. You cannot use regular expressions.

When you call this option more than once, each instance excludes patterns from previous instances.
For example, -source-contains foo -source-contains bar matches all file paths that contain
foo, then all file paths that contain bar excluding paths that contain foo.

When you assign findings to multiple owners, call this option for each call to -owner.
Example: -source-contains main

set unassigned findings options — Options to specify which findings to assign
string

 polyspace-access

1-77

Options to assign all findings or only a subset based on component or individual source files. To make
an assignment, specify a pattern to match against the folder or file paths to assign.

Option Description
-rte color Type of RTE finding to assign. Specify All, Red, Gray, Orange, or

Green.

To specify more than one argument, call the option for each argument.
For example, -rte Red -rte Orange.

-defects impact Impact of DEFECTS findings to assign. Specify All, High, Medium, or
Low.

To specify more than one argument, call the option for each argument.
For example, -defects Medium -defects Low.

-custom-coding-rules Assign all custom coding rules findings.
-coding-rules Assign all coding rules findings.
-code-metrics Assign all code metrics findings.
-global-variables Assign all global variables findings.
-review-status
status

Review status of the findings to assign. Specify New, Unreviewed,
Unassigned, Toinvestigate, Tofix, Justified,
Noactionplanned, Notadefect, Other, or Annotated.

To specify more than one argument, call the option for each argument.
For example, -review-status Tofix -review-status
Toinvestigate.

-severity severity Severity of the findings to assign. Specify All, High, Medium, or Low.

To specify more than one argument, call the option for each argument.
For example, -severity High -severity Low.

-dryrun Display command output without making any assignment. Use this
option to check that your assignments are correct.

List Projects

findingsPath — Project findings path
string

Path of the project findings. Specify this optional argument with -list-project to get the path and
the last run ID of the corresponding project findings. If the path name includes spaces, use double
quotes.
Example: -list-project "public/Examples/Bug_Finder_Example (Bug Finder)"

Set and Unset User Roles

role — Level of access permissions for project folder or findings
owner | contributor | forbidden

Level of access to project folder and findings for a user.

• owner: User can move, rename, or delete specified project folders or findings and review their
content.

1 Option Descriptions

1-78

• contributor: User can review content of specified project folder or findings.
• forbidden: User cannot access specified project folder or findings. Set this role to restrict the

access of a user to a set of project findings inside a project folder that is accessible to the user.

Example: -set-role contributor

username — Polyspace Access user name
string

Polyspace Access user name.
Example: -user jsmith

projectFolderOrFindingsPath — Project folder or findings path
string

Path of a project folder or project findings. When projectFolderOrFindingsPath is the path to a
project folder, the user role you set applies to all subfolders and project findings under that folder. If
the path name includes spaces, use double quotes. To get the project folder or findings path, use -
list-project.
Example: -project-path "public/Examples/Bug_Finder_Example (Bug Finder)"
Example: -project-path public

Migrate Results from Metrics to Polyspace Access

metrics_dir — Folder path of Polyspace Metrics projects
string

Path of folder containing the Polyspace Metrics projects you want to migrate to Polyspace Access.
Example: -generate-migration-commands C:\Users\%username%\AppData\Roaming
\Polyspace_RLDatas\results-repository

dir — Output folder for migration scripts
string

Path to folder that stores the output of -generate-migration-commands. Do not specify an
existing folder.
Example: local/Polyspace_Workspace/migration_scripts

generate migration commands options — Options to specify which projects to migrate
string

Option Description
-output-folder-path
dir

Folder path where you want to store the generated command files. Do
not specify an existing folder.

-max-project-runs
int

Number of most recent analysis runs you want to migrate for each
project. For instance, to migrate only the last two analysis runs of a
project, specify 2.

-project-date-after
YYYY[-MM[-DD]]

Only migrate results that were uploaded to Polyspace Metrics on or
after the specified date.

 polyspace-access

1-79

Option Description
-product productName Product used to analyze and produce project findings, specified as bug-

finder, code-prover, or polyspace-ada.
-analysis-mode mode Analysis mode use to generate project findings, specified as

integration or unit-by-unit.

See Also

Introduced in R2019a

1 Option Descriptions

1-80

Check Descriptions

2

Function Not Reachable
Function is called from unreachable part of code

Description
This check determines if a procedure is reachable from the main entry point procedure through the
program call tree. See also Main entry point.

Check Information
Group: Data Flow
Language: Ada
Acronym: FNR

2 Check Descriptions

2-2

Non-Initialized Local Variable
Local variable is not initialized before being read

Description
Check to establish whether a variable is initialized before being read.

Examples
Ada Example
1 package NIVL is
2 type Pixel is
3 record
4 X : Integer;
5 Y : Integer;
6 end record;
7 procedure MAIN;
8 function Random_Bool return Boolean;
9 end NIVL;
10
11 package body NIVL is
12
13 type TwentyFloat is array (Integer range 1.. 20) of Float;
14
15 procedure AddPixelValue(Vpixel : Pixel) is
16 Z : Integer;
17 begin
18 if (Vpixel.X < 3) then
19 Z := Vpixel.Y + Vpixel.X; -- NIVL error: Y field
20 not initialized
21 end if;
22 end AddPixelValue;
23
24 procedure MAIN is
25 B : Twentyfloat;
26 Vpixel : Pixel;
27 begin
28 if (Random_Bool) then
29 Vpixel.X := 1;
30 AddPixelValue(Vpixel); -- NTC Warning: because of NIVL error
31 in call
32 end if;
33
34 for I in 2 .. Twentyfloat'Last loop
35 if ((I mod 2) = 0) then
36 B(I) := 0.0;
37 end if;
38 end loop;
39 B(2) := B(4) + B(5); -- NIVL Warning because
40 B(odd) not initialized
41 end MAIN;
42
43 end NIVL;

 Non-Initialized Local Variable

2-3

Explanation

The result of the addition is unknown at line 19 because Vpixel.Y is not initialized (gray code on "+"
operator). In addition, line 37 shows how Polyspace prompts the user to investigate further (orange
NIVL warning on B(I)) when all fields have not been initialized.

NIVL Check vs. IN OUT Parameter Mode

Standard Ada83 says: For a scalar parameter, the above effects are achieved by copy: at the start of
each call, if the mode is in or in out, the value of the actual parameter is copied into the associated
formal parameter; then after normal completion of the subprogram body, if the mode is in out or out,
the value of the formal parameter is copied back into the associated actual parameter.

Clearly, in out parameters necessitate initialization before call.

Ada Example
1 package NIVLIO is
2 procedure MAIN;
3 function Random_Boolean return Boolean;
4 end NIVLIO;
5
6 package body NIVLIO is
7
8 Y : Integer := 3;
9 procedure NIVL_Not_Dangerous(X : in out integer) is
10 begin
11 X := 2;
12 if (Y > 2) then
13 Y := X + 3;
14 end if ;
15 end NIVL_Not_Dangerous;
16
17 procedure NIVL_Dangerous(X : in out integer) is
18 begin
19 if (Y /= 3) then
20 Y := X + 3;
21 end if ;
22 end NIVL_Dangerous;
23
24 procedure MAIN is
25 X : Integer;
26 begin
27 if (Random_Boolean) then
28 NIVL_Dangerous(X); -- NIVL ERROR: very significant
29 end if ;
30 if (Random_Boolean) then
31 NIVL_Not_dangerous(X); -- NIVL ERROR: not significant
32 End if ;
33 end MAIN;
34
35 end NIVLIO;

Explanation

In the previous example, as shown at line 28, Polyspace highlights a non-initialized variable that
could be a significant error. In the NIVL_Not_Dangerous procedure, Polyspace highlights the non-
initialized variable at line 30, even though the error is not as significant. To be more permissive with
reference to the standard, the -continue-with-in-out-niv option permits continuation of the
verification for the rest of the sources even if a red error remains e at lines 28 and 31.

Pragma Interface/Import
The following table illustrates how variables are regarded when:

2 Check Descriptions

2-4

• A pragma is used to interface the code;
• An address clause is applied;
• A pointer type is declared.

 Records and Other
Variable Types

Integer Variable Types Function

pragma interface
(C,variable_name)
pragma import (C,
variable_name)

• green NIVL
• Permanent random

value

• No NIVL check
• Permanent random

value

• same behavior as -
automatic-stubbing

• in/out and out variables
are written within their
entire type range

In this case, a permanent random value means that the variable is assumed to have the full range of
values allowed by its type. It is almost equivalent to a volatile variable except for the color of the
NIVL.

Type Access Variables
The following table illustrates how variables are verified by Polyspace when a type access is used:

 Records and Other Variable
Types

Integer Variable Types

Type a_new_type is access
another_type;

• orange NIVL
• Permanent random value

• No NIVL check
• Permanent random value

In this case, a Permanent Random Variable is exactly equivalent to a volatile variable - that is, it is
assumed that the value can have been changed to anywhere within its whole range between one read
access and the next.

Address Clauses
The following table illustrates how variables are regarded by Polyspace where an address clause is
used.

Address Clause Records and Other
Variable Types

Integer Variable Types

for variable_name'address use
16#1234abcd#; for
variable_name'other'address use;

• orange NIVL
• Permanent random

value

• No NIVL check
• Permanent random

value

In this case, a Permanent Random Variable is exactly equivalent to a volatile variable - that is, it is
assumed that the value can have been changed to anything within its whole range between one read
access and the next.

Check Information
Group: Data Flow
Language: Ada
Acronym: NIVL

 Non-Initialized Local Variable

2-5

Non-Initialized Variable
Variable other than local variable is not initialized before being read

Description
For variables other than local variables, this check occurs on every variable read. It determines
whether the variable being read is initialized.

Example
package Example is
 procedure Main;
end Example;

package body Example is
 Var : Integer;

 procedure Main is
 I : Integer;
 begin
 I := Var;
 end Main;
end Example;

Check Information
Group: Data Flow
Language: Ada
Acronym: NIV

2 Check Descriptions

2-6

Division by Zero
Division by zero occurs

Description
Check to establish whether the right operand of a division (denominator) is different to 0[.0].

Ada Example:
1 package ZDV is
2 function Random_Bool return Boolean;
3 procedure ZDVS (X : Integer);
4 procedure ZDVF (Z : Float);
5 procedure MAIN;
6 end ZDV;
7
8 package body ZDV is
9
10 procedure ZDVS(X : Integer) is
11 I : Integer;
12 J : Integer := 1;
13 begin
14 I := 1024 / (J-X); -- ZDV ERROR: Scalar Division by Zero
15 end ZDVS;
16
17 procedure ZDVF(Z : Float) is
18 I : Float;
19 J : Float := 1.0;
20 begin
21 I := 1024.0 / (J-Z); -- ZDV ERROR: float Division by Zero
22 end ZDVF;
23
24 procedure MAIN is
25 begin
26 if (random_bool) then
27 ZDVS(1); -- NTC ERROR: ZDV.ZDVS call does not terminate
28 end if ;
29 if (Random_Bool) then
30 ZDVF(1.0); -- NTC ERROR: ZDV.ZDVF call does not terminate
31 end if;
32 end MAIN;
33
34 end ZDV;
35
36
37

Check Information
Group: Numerical
Language: Ada
Acronym: ZDV

 Division by Zero

2-7

Arithmetic Exceptions
Input argument outside domain of mathematical function

Description
Basically, an error occurs if an input argument is outside the domain over which the mathematical
function is defined.

Check to establish whether standard arithmetic functions are used with good arguments:

• Argument of sqrt must be positive
• Argument of tan must be different from pi/2 modulo pi
• Argument of log must be strictly positive
• Argument of acos and asin must be within [-1..1]
• Argument of exp must be less than or equal to a specific value which depends on the processor

target: 709 for 64/32 bit targets and 88 for 16 bit targets

Ada Example
1
2 With Ada.Numerics; Use Ada.Numerics;
3 With Ada.Numerics.Aux; Use Ada.Numerics.Aux;
4
5 package EXCP is
6 function Bool_Random return Boolean;
7 procedure MAIN;
8 end EXCP;
9
10 package body EXCP is
11
12 -- implementation dependant in Ada.Numerics.Aux: subtype
Double is Long_Float;
13 M_PI_2 : constant Double := Pi/2.0; -- pi/2
14
15 procedure MAIN is
16 IRes, ILeft, IRight : Integer;
17 Dbl_Random : Double;
18 pragma Volatile_ada.htm (dbl_Random);
19
20 SP : Double := Dbl_Random;
21 P : Double := Dbl_Random;
22 SN : Double := Dbl_Random;
23 N : Double := Dbl_Random;
24 NO_TRIG_VAL : Double := Dbl_Random;
25 res : Double;
26 Fres : Long_Float;
27 begin
28 -- assert is used to redefine range values of a variable.
29 pragma assert(SP > 0.0);
30 pragma assert(P >= 0.0);
31 pragma assert(SN < 0.0);

2 Check Descriptions

2-8

32 pragma assert(N <= 0.0);
33 pragma assert(NO_TRIG_VAL < -1.0 or NO_TRIG_VAL > 1.0);
34
35 if (bool_random) then
36 res := sqrt(sn); -- EXCP ERROR: argument of SQRT must be
positive.
37 end if ;
38 if (bool_random) then
39 res := tan(M_PI_2);
 -- EXCP Warning: Float argument of TAN
40 -- may be different than pi/2 modulo pi.
41 end if;
42 if (bool_random) then
43 res := asin(no_trig_val); --EXCP ERROR: float argument of
ASIN is not in -1..1
44 end if;
45 if (bool_random) then
46 res := acos(no_trig_val); --EXCP ERROR: float argument of
ACOS is not in -1..1
47 end if;
48 if (bool_random) then
49 res := log(n); -- EXCP ERROR: float argument of LOG is not
strictly positive
50 end if;
51 if (bool_random) then
52 res := exp(710.0); -- EXCP ERROR: float argument of EXP
is not less than or equal to 709 or 88
53 end if;
54
55 -- range results on trigonometric functions
56 if (Bool_Random) then
57 Res := Sin (dbl_random); -- -1 <= Res <= 1
58 Res := Cos (dbl_random); -- -1 <= Res <= 1
59 Res := atan(dbl_random); -- -pi/2 <= Res <= pi/2
60 end if;
61
62 -- Arithmetic functions where a check is not currently
implemented
63 if (Bool_Random) then
64 Res := cosh(dbl_random);
65 Res := tanh(dbl_random);
66 end if;
67 end MAIN;
68 end EXCP;

Explanation
The arithmetic functions sqrt, tan, sin, cos, asin, acos, atan, and log are derived directly from
mathematical definitions of functions.

Standard cosh and tanh hyperbolic functions are currently assumed to return the full range of
values mathematically possible, regardless of the input parameters. The Ada83 standard gives more
details about domain and range error for each math function.

 Arithmetic Exceptions

2-9

Check Information
Group: Other
Language: Ada
Acronym: EXCP

2 Check Descriptions

2-10

Scalar and Float Overflow
Arithmetic operation causes overflow

Description
Check to establish whether an arithmetic expression overflows. This is a scalar check with integer
types and a float check for floating point expressions.

An overflow is also detected should an array index be out of bounds.

Ada Example
1 package OVFL is
2 procedure MAIN;
3 function Bool_Random return Boolean;
4 end OVFL;
5
6 package body OVFL is
7
8 procedure OVFL_ARRAY is
9 A : array(1..20) of Float;
10 J : Integer;
11 begin
12 for I in A'First .. A'Last loop
13 A(I) := 0.0 ;
14 J := I + 1;
15 end loop;
16 A(J) := 0.0; -- OVFL ERROR: Overflow array index_ada.htm
17 end OVFL_ARRAY;
18
19 procedure OVFL_ARITHMETIC is
20 I : Integer;
21 FValue : Float;
22 begin
23
24 if (Bool_Random) then
25 I := 2**30;
26 I := 2 * (I - 1) +2 ; -- OVFL ERROR: 2**31 is an overflow
value for Integer
27 end if;
28 if (Bool_Random) then
29 FValue := Float'Last;
30 FValue := 2.0 * FValue + 1.0; -- OVFL ERROR: float
variable is overflow
31 end if;
32 end OVFL_ARITHMETIC;
33
34 procedure MAIN is
35 begin
36 if (Bool_Random) then OVFL_ARRAY; end if; -- NTC
propagation because of OVFL ERROR
37 if (Bool_Random) then OVFL_ARITHMETIC; end if;
38 end MAIN;

 Scalar and Float Overflow

2-11

39
40 end OVFL;
41
42

Explanation
In Ada, the bounds of an array can be considered with reference to a new type or subtype of an
existing one. Line 16 shows an overflow error resulting from an attempt to access element 21 in an
array subtype of range 1..20.

A different example is shown by the overflow on line 26, where adding 1 to Integer'Last (the
maximum integer value being 2**31-1 on a 32 bit architecture platform). Similarly, if
OVFL_ARITHMETIC.FValue represents the maximum floating point value, 2*FValue cannot be
represented with the same type and so raises an overflow at line 30.

Check Information
Group: Numerical
Language: Ada
Acronym: OVFL

2 Check Descriptions

2-12

Correctness Condition
Mismatch occurs when access type is used

Attributes Check
Polyspace encourages the user to investigate the attributes SUCC, PRED, VALUE and SIZE further
through a COR check (failure of CORrectness condition).

Ada Example

1
2 package CORS is
3 function Bool_Random return Boolean;
4 procedure MAIN;
5 function INT_VALUE (S : String) return Integer;
6 type PSTCOLORS is (ORANGE, RED, gray, GREEN);
7 type ADCFUZZY is (LOW, MEDIUM, HIGH);
8 end CORS;
9
10 package body CORS is
11
12 type STR_ENUM is (AA,BB);
13
14 function INT_VALUE (S : String) return Integer is
15 X : Integer;
16 begin
17 X := Integer'Value (S); -- COR Warning: Value parameter
might not be in range integer
18 return X;
19 end INT_VALUE;
20
21 procedure MAIN is
22 E : PSTCOLORS := GREEN;
23 F : PSTCOLORS;
24 ADCVAL : ADCFUZZY := ADCFUZZY'First;
25 StrVal : STR_ENUM;
26 X : Integer;
27 begin
28 if (Bool_Random) then
29 F := PSTCOLORS'PRED(E); -- COR Verified: Pred attribute
is not used on the first element of pstcolors
30 E := PSTCOLORS'SUCC(E); -- COR ERROR: Succ attribute is
used on the last element of pstcolors
31 end if;
32 if (Bool_Random) then
33 ADCVAL := ADCFUZZY'PRED(ADCVAL); -- COR ERROR: Pred
attribute is used on the first element of adcfuzzy
34 end if ;
35
36 StrVal := STR_ENUM'Value ("AA"); -- COR Warning: Value
parameter might not be in range str_enum
37 StrVal := STR_ENUM'Value ("AC"); -- COR Warning: Value
parameter might not be in range str_enum
38 X := INT_VALUE ("123"); --X info: -2**31<=[expr]<=2**31-1

 Correctness Condition

2-13

39 end MAIN;
40 end CORS;
41

Explanation

At line 36 and 37, the COR warning (orange) prompts you to check the VALUE attribute.

In fact, standard ADA generates a "CONSTRAINT_ERROR" exception when the string does not
correspond to one of the possible values of the type.

Also note that in this case, Polyspace results assume the full possible range of the returned type,
regardless of the input parameters. In this example, strVal has a range in [aa,bb] and X in
[Integer'First, Integer'Last].

The incorrect use of PRED and SUCC attributes on type is indicated by Polyspace.

SIZE Attribute Error: COR
1
2 with Ada.Text_Io; use Ada.Text_Io;
3
4 package SIZE is
5 PROCEDURE Main;
6 end SIZE;
7
8 PACKAGE BODY SIZE IS
9
10 TYPE unSTab is array (Integer range <>) of Integer;
11
12 PROCEDURE MAIN is
13 X : Integer;
14 BEGIN
15 X := unSTab'Size; -- COR ERROR: Size attribute must not be
used for unconstrained array
16 Put_Line (Integer'Image (X));
17 END MAIN;
18
19 END SIZE;

Explanation

At line 15, Polyspace shows the error on the SIZE attribute. In this case, it cannot be used on an
unconstrained array.

Array Length Check
Checks the correctness condition of an array length, including Strings.

Ada Example
1
2 with Dname;
3 package CORL is
4 function Bool_Random return Boolean;
5 type Name_Type is array (1 .. 6) of Character;
6 procedure Put (C : Character);

2 Check Descriptions

2-14

7 procedure Put (S : String);
8 procedure MAIN;
9 end CORL;
10
11 package body CORL is
12
13 STR_CST : constant NAME_TYPE := "String";
14
15 procedure MAIN is
16 Str1,Str2,Str3 : String(1..6);
17 Arr1 : array(1..10) of Integer;
18 begin
19
20 if (Bool_Random) then
21 Str1 := "abcdefg"; -- COR ERROR: Too many elements in
array, must have 6
22 end if;
23 if (Bool_Random) then
24 Arr1 := (1,2,3,4,5,6,7,8,9); -- COR ERROR: Not enough
elements in array, must have 10
25 end if ;
26 if (Bool_Random) then
27 Str1 := "abcdef";
28 Str2 := "ghijkl";
29 Str3 := Str1 & Str2; -- COR Warning: Length might not be
compatible with 1 .. 6
30 Put(Str3);
31 if Bool_Random then
32 DName.DISPLAY_NAME (DNAME.NAME_TYPE(STR_CST));
-- COR ERROR: String Length is not correct, must be 4
33 end if;
34 end if ;
35 end MAIN;
36
37 end CORL;
38
39 package DName is
40 type Name_Type is array (1 .. 4) of Character;
41 PROCEDURE DISPLAY_NAME (Str : Name_Type);
42 end DName;
43

Explanation

At lines 21 and 24, Polyspace gives the exact value required for the two arrays to match. At line 29,
Polyspace prompts you, through an orange check, to investigate the compatibility of concatenated
arrays.

In addition, at line 32, the required string length is given even if the string length depends on another
package.

DIGITS Value Check
Checks the length of DIGITS constructions.

 Correctness Condition

2-15

Ada Example

1 package DIGIT is
2 procedure MAIN;
3 end DIGIT;
4
5 package body DIGIT is -- NTC ERROR: COR propagation
6
7 type T is digits 4 range 0.0 .. 100.0;
8 subtype T1 is T
9 digits 1000 range 0.0 .. 100.0; -- COR ERROR: digits value
is too large, highest possible value is 4
10
11 procedure MAIN is
12 begin
13 null;
14 end MAIN;
15 end DIGIT;

Explanation

At line 9, Polyspace shows an error on the digits value. It indicates in its associated message the
highest available value, 4 in this case.

DELTA Value Length Check
Checks the length of DELTA constructions.

Ada Example
1
2 package FIXED is
3 procedure MAIN;
4 procedure FAILED(STR : STRING);
5 function Random return Boolean;
6 end FIXED;
7
8 package body FIXED is
9
10 PROCEDURE FIXED_DELTA IS
11
12 GENERIC
13 TYPE FIX IS DELTA <>;
14 PROCEDURE PROC (STR : STRING);
15
16 PROCEDURE PROC (STR : STRING) IS
17 SUBTYPE SFIX IS FIX DELTA 0.1 RANGE -1.0 .. 1.0; -- COR
ERROR: delta is too small, smallest possible value is 0.5E0
18 BEGIN
19 FAILED ("NO EXCEPTION RAISED FOR " & STR);
20 END PROC;
21
22 BEGIN
23
24 IF RANDOM THEN
25 DECLARE
26 TYPE NFIX IS DELTA 0.5 RANGE -2.0 .. 2.0;
27 PROCEDURE NPROC IS NEW PROC (NFIX);
28 BEGIN
29 NPROC ("INCOMPATIBLE DELTA"); --NTC ERROR: propagation
of COR Error
30 END;
31 END IF ;
32

2 Check Descriptions

2-16

33 END FIXED_DELTA;
34
35 procedure MAIN is
36 begin
37 FIXED_DELTA;
38 end MAIN;
39
40 end FIXED;

Explanation

At line 17, Polyspace Server shows an error on the DELTA value. The message gives the smallest
available value, 0.5 in this case.

Static Range and Values Check
Checks if constant values and variable values correspond to their range definition and construction.

Ada Example
1
2 package SRANGE is
3 procedure Main;
4 function IsNatural return Boolean;
5
6 SUBTYPE INT IS INTEGER RANGE 1 .. 3;
7 TYPE INF_ARRAY IS ARRAY(INT RANGE <>, INT RANGE <>) OF INTEGER;
8 SUBTYPE DINT IS INTEGER RANGE 0 .. 10;
9 end SRANGE;
10
11 package body SRANGE is
12
13 TYPE SENSOR IS NEW INTEGER RANGE 0 .. 10;
14
15 TYPE REC2(D : DINT := 1) IS RECORD -- COR Warning: Value
might not be in range
1 .. 3
16 U : INF_ARRAY(1 .. D, D .. 3) := (1 .. D =>
17 (D .. 3 => 1));
18 END RECORD;
19 TYPE REC3(D : DINT := 1) IS RECORD -- COR Error: Value is
not in range 1 .. 3
20 U : INF_ARRAY(1 .. D, D .. 3) := (1 .. D =>
21 (D .. 3 => 1));
22 END RECORD;
23
24 PROCEDURE VALUE_RANGE is
25 VAL : INTEGER;
26 pragma Volatile(VAL);
27 SLICE_A2 : REC2(VAL); -- NIV and COR warning: Value might
not be in range 0 ..
10
28 SLICE_A3 : REC3(4); -- Unreacheable code: because of COR
Error in REC3
29 BEGIN
30 NULL;
31 END VALUE_RANGE;
32
33 PROCEDURE MAIN is
34 Digval : Sensor;
35 begin
36 if IsNatural then
37 declare
38 TYPE Sub_sensor is new Natural range -1 .. 5; -- COR
Error: Static value is not in range of 0 .. 16#7FFF_FFFF#
39 begin
40 null;
41 end;

 Correctness Condition

2-17

42 end if;
43 if IsNatural then
44 declare
45 TYPE NEW_ARRAY IS ARRAY (NATURAL RANGE <>) OF INTEGER;
46 subtype Sub_Sensor is New_Array (Integer RANGE -1 .. 5);
-- COR Error: Static range is not in range 0 .. 16#7FFF_FFFF#
47 begin
48 null;
49 end;
50 end if ;
51 if IsNatural then
52 VALUE_RANGE; -- NTC Error: propagation of the COR error
in VALUE_RANGE
53 else
54 Digval := 11; -- COR Error: Value is not in range of 0..10
55 end if;
56 END Main;
57 end SRANGE;
58
59

Explanation

Polyspace checks the compatibility between range and value. Moreover, it tells in its associated
message the expected length.

Example is shown on the record types REC2 and REC3. Polyspace cannot determine the exact value
of the volatile variable VAL at line 27, because some paths lead to a green definition, others to a red
definition. The result is an orange warning at line 15.

At lines 19, 38, 46 and 54 Polyspace displays errors for out of range values.

Discriminant Check
Checks the usage of a discriminant in a record declaration.

Ada Example
1
2 package DISC is
3 PROCEDURE MAIN;
4
5 TYPE T_Record(A: Integer) is record -- COR Verified: Value
is in range of 1 .. 16#7FFF_FFFF#
6 Sa: String(1..A);
7 END RECORD;
8 end DISC;
9
10 package body DISC is
11
12 PROCEDURE MAIN is
13 begin
14 declare
15 T_STRING6 : T_RECORD(6) := (6, "abcdef"); --COR Verified:
Discriminant is compatible
16 T_StringOther : T_RECORD(6); -- COR Verified:
Discriminant is compatible
17 T_STRING5 : T_RECORD(5) := (5, "abcde"); -- COR Verified:
Discriminant is compatible
18 begin
19 T_StringOther := T_STRING6; -- COR Verified: Discriminant

2 Check Descriptions

2-18

is compatible
20 T_string5 := T_Record(T_STRING6); -- COR ERROR:
Discriminant is not compatible
21 end;
22 END Main;
23
24 END DISC;

Explanation

At line 20, Polyspace shows an error while using a discriminant. T_String6 discriminant of length 6
cannot match T_String5 discriminant of length 5.

Component Check
Checks whether each component of a record given is being used accurately.

Ada Example

1 package COMP is
2
3 PROCEDURE MAIN;
4 SUBTYPE DINT IS INTEGER RANGE 0..1;
5 TYPE COMP_RECORD (D : DINT := 0) is record
6 X : INTEGER;
7 CASE D IS
8 WHEN 0 => ZERO : BOOLEAN;
9 WHEN 1 => UN : INTEGER;
10 END CASE;
11 END RECORD;
12
13 end COMP;
14
15 package body COMP is
16
17 PROCEDURE MAIN is
18 CZERO : COMP_RECORD(0);
19 BEGIN
20 CZERO.X := 0;
21 CZERO.ZERO := FALSE; -- COR Verified: zero is a component
of the variable
22 CZERO.UN := CZERO.X; -- COR ERROR: un is not a component
of the variable
23 END MAIN;
24 END COMP;
25

Explanation

At line 22, Polyspace Server shows an error. According to the declaration of CZERO (line 18), UN is
not a valid field record component of the variable.

Dimension Versus Definition Check
Checks the compatibility of array dimension in relation to their definition.

 Correctness Condition

2-19

Ada Example

1 package DIMDEF is
2 PROCEDURE MAIN;
3 FUNCTION Random RETURN boolean;
4 end DIMDEF;
5
6 package body DIMDEF is
7
8 SUBTYPE ST IS INTEGER RANGE 4 .. 8;
9 TYPE BASE IS ARRAY(ST RANGE <>, ST RANGE <>) OF INTEGER;
10 SUBTYPE TBASE IS BASE(5 .. 7, 5 .. 7);
11
12 FUNCTION IDENT_INT(VAL : INTEGER) RETURN INTEGER IS
13 BEGIN
14 RETURN VAL;
15 END IDENT_INT;
16
17 PROCEDURE MAIN IS
18 NEWARRAY : TBASE;
19 BEGIN
20 IF RANDOM THEN
21 NEWARRAY := (7 .. IDENT_INT(9) => (5 .. 7 => 4)); --
COR Error: Dimension is not compatible with definition
22 END IF;
23 IF Random THEN
24 NEWARRAY := (5 .. 7 => (IDENT_INT(3) .. 5 => 5)); --
COR Error: Dimension is not compatible with definition
25 END IF;
26 END MAIN;
27
28 END DIMDEF;

Explanation

At lines 21 and 24, Polyspace Server indicates the incorrect dimension of the double array Newarray
of type TBASE.

Aggregate Versus Definition Check
Checks the correctness condition on aggregate declaration in relation to their definition.

Ada Example

1
2 package AGGDEF is
3 PROCEDURE MAIN;
4 PROCEDURE COMMENT (A: STRING);
5 function RANDOM return BOOLEAN;
6 end AGGDEF;
7
8 package body AGGDEF is
9
10 TYPE REC1 (DISC : INTEGER := 5) IS RECORD
11 NULL;
12 END RECORD;
13

2 Check Descriptions

2-20

14 TYPE REC2 (DISC : INTEGER) IS RECORD
15 NULL;
16 END RECORD;
17
18 TYPE REC3 is RECORD
19 COMP1 : REC1(6);
20 COMP2 : REC2(6);
21 END RECORD;
22
23 FUNCTION IDENT_INT(VAL : INTEGER) RETURN INTEGER IS
24 BEGIN
25 RETURN VAL;
26 END IDENT_INT;
27
28 PROCEDURE AGGDEF_INIT is -- AGGREGATE INITIALISATION
29 OBJ3 : REC3;
30 BEGIN
31 if random then
32 OBJ3 :=
33 ((DISC => IDENT_INT(7)), (DISC => IDENT_INT(7)));
34 -- COR ERROR: Aggregate is not compatible with definition
35 end if;
36 IF OBJ3 = ((DISC => 7), (DISC => 7)) then
37 -- COR ERROR: Aggregate is not compatible with definition
38 COMMENT ("PREVENTING DEAD VARIABLE OPTIMIZATION");
39 END IF;
40 END AGGDEF_INIT;
41
42 PROCEDURE MAIN IS
43 BEGIN
44 AGGDEF_INIT; -- NTC ERROR: propagation of COR ERROR
45 END MAIN;
45 end AGGDEF;

Explanation

At lines 33 and 35, Polyspace indicates the incompatible aggregate declaration on OBJ3. The
aggregate definition with a discriminant of value 6, is not compatible with a discriminant of value 7.

Aggregate Array Length Check
Checks the length for array aggregate.

Ada Example

1 package AGGLEN is
2 PROCEDURE MAIN;
3 PROCEDURE COMMENT(A: STRING);
4 end AGGLEN;
5
6 package body AGGLEN is
7
8 SUBTYPE SLENGTH IS INTEGER RANGE 1..5;
9 TYPE SL_ARR IS ARRAY (SLENGTH RANGE <>) OF INTEGER;
10
11 F1_CONS : INTEGER := 2;
12 FUNCTION FUNC1 RETURN INTEGER IS

 Correctness Condition

2-21

13 BEGIN
14 F1_CONS := F1_CONS - 1;
15 RETURN F1_CONS;
16 END FUNC1;
17
18
19 TYPE CONSR (DISC : INTEGER := 1) IS
20 RECORD
21 FIELD1 : SL_ARR (FUNC1 .. DISC); -- FUNC1 EVALUATED.
22 END RECORD;
23
24 PROCEDURE MAIN IS
25
26 BEGIN
27 DECLARE
28 TYPE ACC_CONSR IS ACCESS CONSR;
29 X : ACC_CONSR;
30 BEGIN
31 X := NEW CONSR;
32 BEGIN
33 IF X.ALL /= (3, (5 => 1)) THEN -- COR ERROR: Illegal
Length for array aggregate
34 COMMENT ("IRRELEVANT");
35 END IF;
36 END;
37 END;
38 END MAIN;
39
40 END AGGLEN;

Explanation

At line 33, Polyspace shows an error. The static aggregate length is not compatible with the definition
of the component FIELD1 at line 21.

Sub-Aggregates Dimension Check
Checks the dimension of sub-aggregates.

Ada Example

1
2 package SUBDIM is
3 PROCEDURE MAIN;
4 FUNCTION EQUAL (A : Integer; B : Integer) return Boolean;
5 end SUBDIM;
6
7 package body SUBDIM is
8
9
10 TYPE DOUBLE_TABLE IS ARRAY(INTEGER RANGE <>, INTEGER
RANGE <>) OF INTEGER;
11 TYPE CHOICE_INDEX IS (H, I);
12 TYPE CHOICE_CNTR IS ARRAY(CHOICE_INDEX) OF INTEGER;
13
14 CNTR : CHOICE_CNTR := (CHOICE_INDEX => 0);
15

2 Check Descriptions

2-22

16 FUNCTION CALC (A : CHOICE_INDEX; B : INTEGER)
17 RETURN INTEGER IS
18 BEGIN
19 CNTR(A) := CNTR(A) + 1;
20 RETURN B;
21 END CALC;
22
23 PROCEDURE MAIN IS
24 A1 : DOUBLE_TABLE(1 .. 3, 2 .. 5);
25 BEGIN
26 CNTR := (CHOICE_INDEX => 1);
27 if (EQUAL(CNTR(H),CNTR(I))) then
28 A1 := (-- COR ERROR: Sub-agreggates do not
have the same dimension
29 1 => (CALC(H,2) .. CALC(I,5) => -4),
30 2 => (CALC(H,3) .. CALC(I,6) => -5),
31 3 => (CALC(H,2) .. CALC(I,5) => -3));
32 END IF;
33 END MAIN;
34
35 end SUBDIM;

Explanation

At line 28, Polyspace shows an error. One of the sub-aggregates declarations of A1 is not compatible
with its definition. The second sub-aggregates does not respect the dimension defined at line 24.

Sub-aggregates must be singular.

Characters Check
Checks the construction using the character type.

Ada Example

1
2 package CHAR is
3 procedure Main;
4 function Random return Boolean;
5 end CHAR;
6
7
8 package body CHAR is
9
10 type ALL_Char is array (Integer) of Character;
11 TYPE Sub_Character is new Character range 'A' .. 'E';
12 TYPE TabC is array (1 .. 5) of Sub_Character;
13
14 FUNCTION INIT return character is
15 VAR : TabC := "abcdf"; -- COR Error: Character is not in
range 'A' .. 'E'
16 begin
17 return 'A';
18 end;
19
20 procedure MAIN is
21 Var : ALL_Char;

 Correctness Condition

2-23

22 BEGIN
23 IF RANDOM THEN
24 Var(1) := Init; --NTC ERROR: propagation of the COR err
25 ELSE
26 Var(Integer) := ""; -- COR ERROR: the 'null' string
literal is not allowed here
27 END IF;
28 END MAIN;
29 END CHAR;

Explanation

At line 15, Polyspace indicates that the assigned array is not within the range of the Sub_Character
type. Moreover, the character values of VAR does not match a value in the range 'A' ..'E'.

At line 26, a particular detection is made by Polyspace when the null string literal is assigned
incorrectly.

Accessibility Level on Access Type
Checks the accessibility level on an access type. This check is defined in Ada Standard at chapter
3.10.2-29a1. It detects errors when an access pointer refers to a bad reference.

Ada Example
1
2 package CORACCESS is
3 procedure main;
4 function Brand return Boolean;
5 end CORACCESS;
6
7 package body CORACCESS is
8 procedure main is
9
10 type T is new Integer;
11 type A is access all T;
12 Ref : A;
13
14 procedure Proc1(Ptr : access T) is
15 begin
16 Ref := A(Ptr); -- COR Verified: Accessibility level deeper
than that of access type
17 end;
18
19 procedure Proc2(Ptr : access T) is
20 begin
21 Ref := A(Ptr); -- COR ERROR: Accessibility level not
deeper than that of access type
22 end;
23
24 procedure Proc3(Ptr : access T) is
25 begin
26 Ref := A(Ptr); -- COR Warning: Accessibility level might
be deeper than that of access type
27 end;
28
29 X : aliased T := 1;

2 Check Descriptions

2-24

30 begin
31 declare
32 Y : aliased T := 2;
33 begin
34 Proc1(X'Access);
35 if BRand then
36 Proc2(Y'Access); -- NTC ERROR: propagation of error
at line 22
37 elsif BRand then
38 Proc3(Y'Access); -- NTC ERROR: propagation of error
at line 27
39 end if;
40 end;
41 Proc3(X'Access);
42 end main;
43 end CORACCESS;
44

Explanation

In the example above at line 16: Ref is set to x'access and Ref is defined in same block or in a deeper
one. This is authorized.

On the other hand, y is not defined in a block deeper or inside the one in which Ref is defined. So, at
the end of block, y does not exist and Ref is supposed to points to on y. It is prohibited and Polyspace
checks at lines 21 and 26.

Note The warning at line 26 is due to the combination of a red check because of y'access at line 38
and a green one for x'access at line 41.

Accessibility of a Tagged Type
Checks if a tag belongs to a tagged type hierarchy. This check is defined in Ada Standard at chapter
4.6 (paragraph 42).

It detects errors when a Tag of an operand does not refer to class-wide inheritance hierarchy.

Ada Example

1 package TAG is
2
3 type Tag_Type is tagged record
4 C1 : Natural;
5 end record;
6
7 type DTag_Type is new Tag_Type with record
8 C2 : Float;
9 end record;
10
11 type DDTag_Type is new DTag_Type with record
12 C3 : Boolean;
13 end record;
14
15 procedure Main;
16

 Correctness Condition

2-25

17 end TAG;
18
19
20 package body TAG is
21
22 procedure Main is
23 Y : DTag_Type := DTag_Type'(C1 => 1, C2 => 1.1);
24 Z : DTag_Type := DTag_Type'(C1 => 2, C2 => 2.2);
25
26 W : Tag_Type'Class := Z; -- W can represent any object
27 -- in the hierarchy rooted at Tag_Type
28 begin
29 Y := DTag_Type(W); -- COR Warning: Tag might be correct
30 null;
31 end Main;
32
33 end TAG;

Explanation

In the previous example W represents any object in the hierarchy rooted at Tag_Type.

At line 29, a check is made that the tag of W is either a tag of DTag_Type or DDTag_Type. In this
example, the check should be green, W belongs to the hierarchy.

Polyspace is not precise on tagged types and currently flags each one with a COR warning.

Explicit Dereference of a Null Pointer
When a pointer is dereferenced, Polyspace checks whether or not it is a null pointer.

Ada Example

1 package CORNULL is
2 procedure main;
3 end CORNULL;
4
5 package body CORNULL is
6 type ptr_type is access all integer;
7 ptr : ptr_type;
8 A : aliased integer := 10;
9
10 procedure main is
11 begin
12 ptr := A'access;
13 if (ptr /= null) then
14 ptr.all := ptr.all + 1; -- COR Warning: Explicit
dereference of possibly null value
15 pragma assert (ptr.all = 10); -- COR Warning: Explicit
dereference of possibly null value
16 null;
17 end if;
18 end main;
19 end CORNULL;
20

2 Check Descriptions

2-26

Explanation

At line 14 and line 15, Polyspace checks the null value of ptr pointer. As Polyspace does not perform
pointer verification, it is not able to be precise on such a construction.

These checks are currently colored orange.

Check Information
Group: Other
Language: Ada
Acronym: COR

 Correctness Condition

2-27

Power Arithmetic
Power interger or float function used with negative argument

Description
Check to establish whether the standard power integer or float function is used with an acceptable
(positive) argument.

Ada Example
1 With Ada.Numerics; Use Ada.Numerics;
2 With Ada.Numerics.Aux; Use Ada.Numerics.Aux;
3
4 package POWF is
5 function Bool_Random return Boolean;
6 procedure MAIN;
7 end POWF;
8
9 package body POWF is
10
11 procedure MAIN is
12 IRes, ILeft, IRight : Integer;
13 Res, Dbl_Random : Double ;
14 pragma Volatile(Dbl_Random);
15 begin
16 -- Implementation of Power arithmetic function with **
17 if (Bool_Random) then
18 ILeft := 0;
19 IRight := -1;
20 IRes:= ILeft ** IRight; -- POW ERROR: Power must
be positive
21 end if;
22 if (Bool_Random) then
23 ILeft := -2;
24 IRight := -1;
25 IRes:= ILeft ** IRight; -- POW ERROR: Power must
be positive
26 end if;
27
28 ILeft := 2e8;
29 IRight := 2;
30 IRes:= ILeft ** IRight; -- otherwise OVFL Warning
31
32 -- Implementation with double
33 Res := Pow (dbl_Random, dbl_Random); -- POW Warning :
may be not positive
34 end MAIN;
35 end POWF;

2 Check Descriptions

2-28

Explanation
An error occurs on the power function on integer values "**" with respect to the values of the left and
right parameters when left <= 0 and right < 0. Otherwise, Polyspace prompts the user to investigate
further by means of an orange check.

Note As recognized by the Standard, Polyspace places a green check on the instruction left**right
with left:=right:=0.

Check Information
Group: Numerical
Language: Ada
Acronym: POW

 Power Arithmetic

2-29

User Assertion
Assertion statement fails

Description
Check to establish whether a user assertion is valid. If the assumptions implied by an assertion are
invalid, then the standard behavior of the pragma assert is to abort the program. Polyspace therefore
considers a failed assertion to be a runtime error.

Ada Example
1
2 package ASRT is
3 function Bool_Random return Boolean;
4 procedure MAIN;
5 end ASRT;
6
7 package body ASRT is
8
9 subtype Intpos is Integer range 0..Integer'Last;
10 subtype TenInt is Integer range 1..10;
11
12 Val_Constant : constant Boolean := True;
13 procedure MAIN is
14 -- Init variables
15 Flip_Flop, Flip_Or_val : Boolean;
16 Ten_Random, Ten_Positive : TenInt;
17 pragma Volatile_ada.htm (ten_random);
18 begin
19
20 if (Bool_Random) then
21 -- Flip_Flop is randomly be True or False
22 Flip_Flop := bool_random;
23
24 -- Flip_Or_Val is True
25 Flip_Or_Val := Flip_Flop or Val_Constant;
26 pragma assert(flip_flop=True or flip_flop=False); --
User assertion is verified
27 pragma assert(Flip_Or_Val=False); -- ASRT ERROR: User
assertion fails
28 end if;
29 if (Bool_Random) then
30 ten_positive := Ten_random;
31 pragma assert(ten_positive > 5); -- ASRT Warning: User
assertion may fail
32 pragma assert(ten_positive > 5); -- User assertion
is verified
33 pragma assert(ten_Positive <= 5); -- ASRT ERROR:
Failure User Assert
34 end if;
35
36 end MAIN;

2 Check Descriptions

2-30

37
38 end ASRT; -- End Package

Explanation
In the ASRT.ASRT function, pragma assert is used in two different manners:

• To establish whether the values flip_flop and var_flip in the program are inside the domain which
that the program is designed to handle. If the values were outside the range implied by the assert,
then the program wouldn't be able to run properly. Thus they are flagged as runtime errors.

• To redefine the range of variables as shown at line 32 where ASRT.Ten_positive is restrained to
only a few values. Polyspace makes the assumption that if the program is executed without a
runtime error at line 32, Ten_positive can only have a value greater than 5 after the line.

Check Information
Group: Other
Language: Ada
Acronym: ASRT

 User Assertion

2-31

Non Terminating Call
Called function does not return to calling context

Description
• NTC and NTL are the only red errors which can be filtered out using the filters shown below
• They don't stop the verification
• As other reds, code placed after them are gray (unreachable): the only color they can take is red.

They are not “orange” NTL or NTC
• They can reveal a bug, or can simply just be informative

Check Description
NTC Your function called "test" calls f;. And “f;” is flagged as a red NTC. Why? There could be

five distinct explanations for this NTC:

• “f” contains a red error;
• “f” contains an NTL ;
• “f” contains an NTC;
• “f” contains an orange which is context dependant : it is either red or green: for this

call, it makes the function crash.

Note Some information can be given when clicking on the NTC

The list of so-called "non satisfiable constraints" represents the list of variables that cause the red
error inside the function. The (potentially) long list of variables is useful to understand the cause of
the red NTC, as it gives the conditions causing the NTC: it can be a list of variables (global or not):

• with a given value;
• which are not initialized. Perhaps the variables are initialized outside the set of verified files.

Solution
Carefully check the reasons with relation to your situation.

Note To exclude from verification non-terminating procedures that you want to retain, use the option
Verification Assumptions > Procedures known to cause NTC.

Non Termination of Call: NTC
Check to establish whether a procedure call returns. It is not the case when the procedure contains
an endless loop or a certain error, or if the procedure calls another procedure which does not
terminate. In the latter instance, the status of this check is propagated to the caller.

If you set the Review Level slider to 0, the software does not display NTC checks on the Results
Explorer or Results List tab.

2 Check Descriptions

2-32

Ada Example
1 package NTC is
2 procedure MAIN;
3 -- Stubbed function
4 function Random_Boolean return Boolean;
5 end NTC;
6
7 package body NTC is
8
9 procedure FOO (X : Integer) is
10 Y : Integer;
11 begin
12 Y := 1 / X; -- ZDV Warning: Scalar division
by zero may occur
13 while (X >= 0) loop -- NTL ERROR: Loop does not terminate
14 if (Y /= X) then
15 Y := 1 / (Y-X);
16 end if;
17 end loop;
18 end FOO;
19
20 procedure MAIN is
21 begin
22 if (Random_Boolean) then
23 FOO(0); --NTC ERROR: Division by zero in NTC.FOO (ZDV)
24 end if ;
25 if (Random_Boolean) then
26 FOO(2); --NTC ERROR: Non Termination Loop in NTC.FOO (NTL)
27 end if;
28 end MAIN;
29 end NTC;

Explanation

In this example, the function NTC.FOO is called twice and neither of these 2 calls ever terminates:

• The first does not return because of a division by zero (ZDV on page 2-7 warning) at line 12 when
X = 0.

• The second does not terminate because of an infinite loop (red Non Terminating Loop) at line
13.

Note An NTC check can only be red.

Non Termination of Call Due to Entry in Tasks
Tasks or entry points are called by Polyspace at the end of the main subprogram (which is executed
sequentially) at the same time (the main subprogram must terminate).

In the Ada language, explicit task constructs which are automatically detected by Polyspace are also
called at the end of the main subprogram. An Ada program whose main subprogram calls a task
entry, for instance, violates this model. Polyspace signals violations of this hypothesis, by indicating
an NTC on an entry call performed in the main.

In the Polyspace model, the main procedure is executed first before another task is started.

Example
1 package NTC_entry is
2
3 TASK TYPE MyTask IS

 Non Terminating Call

2-33

4 ENTRY START;
5 ENTRY V842;
6 END MyTask;
7 procedure Main;
8 A : Integer;
9 end NTC_entry;
10
11 package body NTC_entry is
12
13 task body MyTask is
14 begin
15 accept Start;
16 A := A + 1; -- Gray code
17 accept V842;
18 A := A - 1; -- Gray code
19 accept V842;
20 A := A + 1; -- Gray code
21 accept V842;
22 A := A - 1; -- Gray code
23 end MyTask;
24
25 procedure Main is
26 T1 : MyTask;
27 begin
28 A := 0;
29 T1.Start; -- NTC ERROR: entry task in the main
30 T1.V842;
31 T1.V842;
32 T1.V842;
33 pragma Assert(A=0); -- Gray code
34 end Main;
35 end NTC_entry;

Using the launching command polyspace-ada -lang ada95 -main NTC_entry.main on the
previous example leads to a red NTC in the main procedure and gray code on the main task body
MyTask.

The only way to verify this code with Polyspace is to add another main procedure with a null body and
to consider the NTC_entry.main as a task.

Package mymain is Procedure null_main; End mymain;

The previous small piece of code added and the usage of the launching command polyspace-ada -
lang95 -main mymain.null_main. -entry-points NTC_entry.main allow removing the red
NTC in NTC_entry.main and gray code in the body of MyTask.

Another example concerns the call of an accepted meeting in the task body from the main (using -
main main.main):

 main main.main):
 --package body main is
 procedure main is
 begin
 depend.control.cancel; -- red NTC because of the call
to a task is called by the main
 end main;
 --end main;

2 Check Descriptions

2-34

 with Text_Io;
 package body depend is
 task body control is
 date : Integer := 0;
 init_date: Integer;
 begin
 loop
 select
 accept cancel;
 if (date = 0) then
 init_date := 10;
 end if ;
 date := init_date ;
 Text_Io.Put_Line ("Hello");
 exit;
 end select;
 end loop;
 end;
 end depend;

Sqrt, Sin, Cos, and Generic Elementary Functions
When your code has mathematical functions that Polyspace does not support and variables derived
from these mathematical functions are summed, the verification produces unproven checks arising
from overflows.

You encounter this issue when Polyspace stubs mathematical functions automatically, which happens
if the function declarations for your compiler are slightly different from the declarations assumed by
Polyspace. In following example, you resolve the issue by providing an extra package that matches
your mathematical functions to Polyspace functions. The extra package does not have an impact on
the original source code, that is, the software does not modify your code.

The original source code:
package Types is
 subtype My_Float is Float range -100.0 .. 100.0;
end Types;

3 package Main is
4 procedure Main;
5 end Main;
6
7
8 with New_Math; use New_Math;
9 with Types; use Types;
10
11 package body Main is
12 procedure Main is
13 X : My_float;
14 begin
15 X := Cos(12.3); --range [-1.0 .. 1.0]
16 X := Sin(12.3); --range [-1.0 .. 1.0]
17 X ::= Sqrt(-1.5); --is red: NTC Error
18 end;
19 end Main;

The original math package:
with My_Specific_Math_Lib;
with Types; use Types;

package New_Math is

 Non Terminating Call

2-35

 function COS (X : My_Float) return My_Float renames \
My_specific_math_lib.
Cos;
 function SQRT (X : My_Float) return My_Float renames \
My_specific_math_lib.
sqrt;
 function SIN (X : My_Float) return My_Float renames \
My_specific_math_lib.
sin;
end New_Math;

Create the following package for more precise modeling of your mathematical functions in the
verification.
WITH Ada.Numerics.Generic_Elementary_Functions;
with Types; use Types;

package My_specific_math_lib is new Ada.Numerics.
Generic_Elementary_Functions(My_Float);

Note Due to a lack of precision in some areas, Polyspace sometimes does not generate a red NTC
check for mathematical functions even when a problem exists. It is important to consider each call to
a mathematical function as an unproven check that could lead to a run-time error.

Check Information
Group: Control Flow
Language: Ada
Acronym: NTC

2 Check Descriptions

2-36

Non Terminating Loop
Loop does not terminate or contains an error

Description
• NTC and NTL are the only red errors which can be filtered out using the filters shown below
• They don't stop the verification
• As other reds, code placed after them are gray (unreachable): the only color they can take is red.

They are not “orange” NTL or NTC
• They can reveal a bug, or can simply just be informative

Check Description
NTL A NTL is a loop for which the break condition

cannot be met. Among NTLs, you will find the
following examples:

• while(1=1) loop function_call; end loop; //
informative NTL

• while(x >= 0) loop x := x+1; end loop; // with
x as an unsigned int could reveal a bug, or not
(an unsigned is always positive)

• for I in 0 .. 10 loop my_array(i) = 10; end
loop; // with "my_array is integer in 0..9" this
red NTL reveals a bug in the array access,
flagged in orange

Non Termination of Loop: NTL
Check to establish whether a loop (for,do-while, while) terminates.

If you set the Review Level slider to 0, the software does not display NTL checks on the Results
Explorer or Results List tab.

Ada Example

1
2 package NTL is
3 procedure MAIN;
4 -- Prototypes stubbed as pure functions
5 procedure Send_Data (Data : in Float);
6 procedure Update_Alpha (A : in Float);
7 end NTL;
8
9 package body NTL is
10
11 procedure MAIN is
12 Acq, Vacq : Float;
13 pragma Volatile_ada.htm (Vacq);
14 -- Init variables

 Non Terminating Loop

2-37

15 Alpha : Float := 0.85;
16 Filtered : Float := 0.0;
17 begin
18 loop -- NTL information: Non terminating looop
19 -- Acquisition
20 Acq := Vacq;
21 -- Treatment
22 Filtered := Alpha * Acq + (1.0 - Alpha) * Filtered;
23 -- Action
24 Send_Data(Filtered);
25 Update_Alpha(Alpha);
26 end loop;
27 end MAIN;
28 end NTL;
29

Explanation

In the above example, the "continuation condition" of the while is always true and the loop does not
exit. Thus Polyspace will raise an error.

In some case, the condition is not trivial and may depend on some program variables. Nevertheless,
Polyspace is still able to treat those cases.

Another NTL Example: Error Propagation

As opposed to other red errors, Polyspace does not continue with the verification in the current
branch. Due to the inside error, the (for, do-while, while) loop does not terminate.

1 package NTLDO is
2 procedure MAIN;
3 end NTLDO;
4
5 package body NTLDO is
6 procedure MAIN is
7 A : array(1..20) of Float;
8 J : Integer;
9 begin
10 for I in A'First .. 21 loop -- NTL ERROR: propagation of
OVFL ERROR
11 A(I) := 0.0 ; -- OVFL Warning: 20 verification with
I in [1,20] and one ERROR with I = 21
12 J := I + 1;
13 end loop;
14 end MAIN;
15 end NTLDO;

Note A NTL check can only be red.

Check Information
Group: Control Flow
Language: Ada
Acronym: NTL

2 Check Descriptions

2-38

Unreachable Code
Code cannot be reached during execution

Description
Check to establish whether different code snippets (assignments, returns, conditional branches and
function calls) are reached (Unreachable code is referred to as "dead code"). Dead code is
represented by means of a gray color on every check and an UNR check entry.

Ada Example
1 package UNR is
2 type T_STATE is (Init, Wait, Intermediate, EndState);
3 function STATE (State : in T_STATE) return Boolean;
4 function Intermediate_State(I : in Integer) return T_STATE;
5 function UNR_I return Integer;
6 procedure MAIN;
7 end UNR;
8
9 package body UNR is
10
11 function STATE (State : IN T_STATE) return Boolean is
12 begin
13 if State = Init then
14 return False;
15 end if ;
16 return True;
17 end STATE;
18
19 function UNR_I return Integer is
20 Res_End, Bool_Random : Boolean;
21 I : Integer;
22 Res_State : T_STATE;
23 pragma Volatile_ada.htm (bool_random);
24 begin
25 Res_End := STATE(Init);
26 if (Res_End = False) then
27 Res_End := State(EndState);
28 Res_State ::= Intermediate_State(0);
29 if (Res_End = True or else Res_State = Wait) then -- UNR code
30 Res_State := EndState;
31 end if;
32 -- Use of I which is not initialized
33 if (Bool_Random) then
34 Res_State := Intermediate_State(I); -- NIV ERROR
35 if (Res_State = Intermediate) then -- UNR code because
of NIV error
36 Res_State := EndState;
37 end if;
38 end if;
39 else
40 -- UNR code
41 I := 1;
42 Res_State := Intermediate_State(I);
43 end if;
44 return I; -- NIV ERROR: because of UNR code
45 end UNR_I;
46
47 procedure MAIN is
48 I : Integer;
49 begin
50 I := UNR_I; -- NTC ERROR because of propagation
51 end MAIN;
52

 Unreachable Code

2-39

53 end UNR;
54
55
56

Explanation
The example illustrates three possible reasons why code might be unreachable, and hence be colored
gray.

• As shown at line 26, the first branch is always true (if-then part) and so the other branch is not
executed (else part at lines 40 to 42).

• At line 29 a conditional part of a conditional branch is always true and the other part not
evaluated because of the standard definition of logical operator or else.

• The piece of code after a red error is not evaluated by Polyspace Server. The call to the function
and the lines following line 34 are considered to be dead code. Correcting the red error and
relaunching would allow the color to be revised.

Check Information
Group: Data Flow
Language: Ada
Acronym: UNR

2 Check Descriptions

2-40

Assumptions Used During Verification

• “Why Polyspace Verification Uses Approximations” on page 3-2
• “Procedure Calls with Default Parameters” on page 3-3
• “_INIT_PROC Procedures” on page 3-5
• “Expansion of Sizes” on page 3-6
• “Inline Assemblers” on page 3-7
• “Volatile Variables” on page 3-8
• “Shared Variables” on page 3-9
• “Pointers to Explicit Tasks” on page 3-13
• “Limitations of Polyspace Verification” on page 3-14

3

Why Polyspace Verification Uses Approximations

In this section...
“What is Static Verification” on page 3-2
“Exhaustiveness” on page 3-2

What is Static Verification
Polyspace software uses static verification to prove the absence of runtime errors. Static verification
derives the dynamic properties of a program without actually executing it. This differs significantly
from other techniques, such as runtime debugging, in that the verification it provides is not based on
a given test case or set of test cases. The dynamic properties proven in the Polyspace verification are
true for all executions of the software.

Polyspace verification works by approximating the software under verification, using representative
approximations of software operations and data.

For example, consider the following code:

for (i=0 ; i<1000 ; ++i)
{ tab[i] = foo(i);
}

To check that the variable 'i' does not overflow the range of 'tab' a traditional approach would be to
enumerate each possible value of 'i'. One thousand checks would be required.

Using the static verification approach, the variable 'i' is modelled by its variation domain. For
instance the model of 'i' is that it belongs to the [0..999] static interval. (Depending on the complexity
of the data, convex polyhedrons, integer lattices and more elaborated models are also used for this
purpose).

An approximation leads by definition to information loss. For instance, the information that 'i' is
incremented by one every cycle in the loop is lost. However, the important fact is that this information
is not required to ensure that a range error will not occur; it is only necessary to prove that the
variation domain of 'i' is smaller than the range of 'tab'. Only one check is required to establish that –
and hence the gain in efficiency compared to traditional approaches.

Static code verification does have an exact solution, but that solution is generally not practical, as it
would generally require the enumeration of all test cases. As a result, approximation is required.

Exhaustiveness
Nothing is lost in terms of exhaustiveness. The reason is that Polyspace works by performing upper
approximations. In other words, the computed variation domain of a program variable is a superset of
its actual variation domain. The direct consequence is that a runtime error (RTE) item to be checked
cannot be missed by Polyspace.

3 Assumptions Used During Verification

3-2

Procedure Calls with Default Parameters
Some checks may be located on procedure calls. They correspond to default values assigned to
parameters of a procedure.

Example
1 package DCHECK is
2 type Pixel is
3 record
4 X : Integer;
5 Y : Integer;
6 end record;
7 procedure MAIN;
8
9 NError : Integer;
10 procedure Failure (Val : Integer := Nerror);
11 procedure MessageFailure (str : String := "");
12 end DCHECK;
13
14 package body DCHECK is
15 type TwentyFloat is array (Integer range 1.. 20) of Float;
16
17 procedure AddPixelValue(Vpixel : Pixel) is
18 begin
19 if (Vpixel.X < 3) then
20 Failure; -- NIV Verified: Variable is initialized
(Nerror)
21 MessageFailure; --COR Verified: Value is in range (string)
22 end if;
23 end AddPixelValue;
24
25 procedure MAIN is
26 B : Twentyfloat;
27 Vpixel : Pixel;
28 begin
29 NError := 12;
30 Vpixel.X := 1;
31 AddPixelValue(Vpixel);
32 NError := -1;
33 for I in 2 .. Twentyfloat'Last loop
34 if ((I mod 2) = 0) then
35 B(I) := 0.0;
36 if (I mod 2) /= 0 then
37 Failure; -- NIV Unreachable: Variable is not
initialized
38 MessageFailure; -- COR Unreachable: Value is not in range
39 end if;
40 end if;
41 end loop;
42 MessageFailure("end of Main");
43 end MAIN;
44 end DCHECK;

Explanation
In the previous example, at line 20 and 37, checks on the procedure called Failure represent the
check NIV made on the default parameter Nerror (a global parameter).

COR checks at line 21 and 38 on MessageFailure represent verification made by Polyspace on the
default assignment of a null string value on the input parameter.

Note Checks remain on the procedure definition except for the following basic types and values:

 Procedure Calls with Default Parameters

3-3

• A numerical value (example: 1, 1.4)
• A string (example: “end of main”)
• A character (example: A)
• A variable (example: Nerror).

3 Assumptions Used During Verification

3-4

_INIT_PROC Procedures
In the Polyspace results, you might find nodes _INIT_PROC. As your compiler, Polyspace generates a
function _INIT_PROC for each record where initialization occurs. When a package defines many
records, each _INIT_PROC is differentiated by $I (I in 1.n).

Example
1 package test is
2 procedure main;
3 end test;
4
5 package body test is
6
7 subtype range_0_3 is integer range 0..3;
8 Vg : Integer := 1;
9 Pragma Volatile(Vg);
10
11 function random return integer;
12 type my_rec1 is
13 record
14 a : integer := 2 + random; -- Unproven OVFL coming from
_INIT_PROC procedure (initialization of V1)
15 b : float := 0.2;
16 end record;
17 V1 : my_rec1;
18 V2 : my_rec1 := (10, 10.10);
19
20 procedure main is
21 Function Random return Boolean;
22 begin
23 null;
24 end;
25 end test;

In the previous example, an unproven OVFL on the field a of record my_rec1 has been detected when
initializing the global variable V1. It initializes record of global variable V1 at line 17. A random
procedure could return any integer and lead to an overflow by adding to 2. The check is located in the
_INIT_PROC node in the Results List view.

 _INIT_PROC Procedures

3-5

Expansion of Sizes
The -array-expansion-size option forces Polyspace to verify each cell of global variable arrays
having length less or equal to number as a separate variable.

Example 3.1. Example

Package body Test is
 Glob_Array_3 : array(1..3) of Integer := (1,2,3);
 Glob_Array_8 : array(1..8) of Integer := (1,2,3,4,5,6,7,8);
 procedure Main is
 begin
 pragma Assert (Glob_Array_3(3) = 3);
 pragma Assert (Glob_Array_8(3) = 3);
 end Main;
end Test;

The -variable-to-expand option is used to specify aggregate variables (record, etc.) that will be
split into independent variables for the purpose of verification. This option has an impact on the
Global Data Dictionary results:

• Each variable specified in this option will have its fields verified separately;
• The data dictionary will distinguish fields accessed by different tasks.

The depth of the variable to expand is controlled by the -variable-to-expand.

Note Expansion options have an impact on the duration of a verification.

3 Assumptions Used During Verification

3-6

Inline Assemblers
Using Asm procedures, you inline assembly language instructions in your source code. You use the
Asm_Output attribute to define the Outputs parameter of the Asm procedure. The general format of
the attribute is

Type'Asm_Output (constraint_string, var)

var is variable that stores the result of the assembly language instruction in the Asm statement.
constraint_string is a string such as "=r" that defines what kind of register is required for
storing the variable.

Irrespective of the value of constraint_string, Polyspace for Ada assumes that after the Asm
statement, var is initialized and has a full range of values allowed by its type.

For instance, after the following statement, Polyspace for Ada assumes that the variable Result is
initialized and has full range of values.

Asm("and %0, %1, %2",
 Outputs => Integer'Asm_Output("=r", Result),
 Inputs => (Integer'Asm_Input("r", Key),
 Integer'Asm_Input("r", Mask)));

If a later instruction reads Result:

• The Non-initialized variable check on Result is green.
• On the Source pane, if you place your cursor on Result, the tooltip shows that Result has full

range of values allowed by its type.

 Inline Assemblers

3-7

Volatile Variables

Problem
A volatile variable can be defined as a variable which does not respect the "RAM axiom".

This axiom is:

"If I write a value V in the variable X and if I read X's value before another writing to X occurs, I will
get V."

Explanation
As the value of a volatile variable is "unknown", it can take any value (that can be) represented by the
type of the variable and can change even between 2 successive memory accesses.

A volatile variable is viewed as a "permanent random" by Polyspace because the value can change
within its whole range between one read access and the next.

function test return integer is
 random: Integer;
 pragma volatile (random);
 y: Integer; -- random ~ [-2^31, 2^31-1] ,
 -- although random is not initialized
begin
 y:= 1 /random; -- division and init orange
 -- because random
~ [-2^31, 2^31-1]
 random:= 100;
 y:= 1 /random; -- division and init orange
 -- because random~ [-2^31,2^31-1]
 return random; -- random ~ [-2^31, 2^31-1]
end;

3 Assumptions Used During Verification

3-8

Shared Variables

Abstract
My shared variables appear in orange in the variable dictionary.

Explanation
Polyspace Server™ for Ada does not make prior assumptions about the execution sequence of tasks.
Specifically, shared variables are considered as unprotected.

Solution
You can use the following mechanisms to protect your variables.

• Critical section and mutual exclusion (explicit protection mechanisms);
• Access pattern (implicit protection);
• Rendezvous.

Critical Sections
These are the most common protection mechanism in applications and they are simple to use in
Polyspace Server for Ada:

• If one task makes a call to a particular critical section, other tasks specified by the label -
critical-section-begin will be blocked until the originating task calls the -critical-
section-end function;

• The code between two critical sections is considered atomic;
• It is a binary semaphore: you only have one token per label (in the example below CS1). Unlike

many implementations of semaphores, it is not a decrementing counter that can keep track of a
number of attempted accesses.

Also refer to “Atomicity”

package my_tasking

 procedure proc1;
 procedure proc2;
 procedure my_main;
 X: INTEGER;
 Y: INTEGER;
end my_tasking;

package body my_tasking

 with pkutil; use pkutil;
package body my_tasking is
 procedure proc1 is
 begin
 begin_cs;
 X := 12; -- X is protected

 Shared Variables

3-9

 Y := 100;
 end_cs;
 end;
 procedure proc2 is
 begin
 begin_cs;
 X := 11; -- X is protected
 end_cs;
 Y := 101; -- Y is not protected
 end;
 procedure my_main is
 begin
 X := 0;
 Y := 0;
 end
end my_tasking;

package pkutil

 procedure begin_cs;
 procedure end_cs;
end pkutil;

package body pkutil

 procedure Begin_CS is
 begin
 null;
 end Begin_CS;
 procedure End_CS is
 begin
 null;
 end end_cs;
end pkutil;

Launching command

polyspace-ada \
-main my_tasking.my_main \
-entry-points my_tasking.proc1,my_tasking.proc2 \
-critical-section-begin "pkutil.begin_cs:CS1" \
-critical-section-end "pkutil.end_cs:CS1"

Mutual Exclusion
Mutual exclusion between tasks or interrupts can be implemented while preparing Polyspace Server
for Ada for launch setting.

Suppose there are entry-points which do not overlap with each other, and that variables are shared by
nature.

If entry-points are mutually exclusive, i.e. if they do not overlap in time, you may want Polyspace
Server for Ada to take this into account. Consider the following example.

These entry-points cannot overlap:

• t1 and t3

3 Assumptions Used During Verification

3-10

• t2, t3 and t4

These entry-points can overlap:

• t1 and t2
• t1 and t4

Before launching Server, the names of mutually exclusive entry-points are placed on a single line

polyspace-ada -temporal-exclusion-file myExclusions.txt -entry-points
t1,t2,t3,t4

The myExclusions.txt is also required in the current folder. This will contain:

t1 t3

t2 t3 t4

Rendezvous
Polyspace Server for Ada takes the specified rendezvous into account. When the rendezvous are
explicitly specified in the code, the software overrides other synchronization mechanisms specified
through the -entry-points option.

package_first_task other tasks
package first_task is
 task task_1 is
 entry INIT;
 entry ORDER (X: out Integer);
 end task_1;
end first_task;
package body first_task is
 task body task_1 is
 begin
 accept INIT;
 -- do things
 accept ORDER (X: out Integer)
 do
 -- do things
 -- call functions
 X:= 12;
 end; -- end accept
 -- return to main execution
 end task_1;
end first_task;

with first_task; use first_task;
package other_tasks is
 task task_2 is
 end task_2;
 procedure main;
end other_tasks;
package body other_tasks is
 task body task_2 is
 X: INTEGER;
 begin
 task_1.init;
 task_1.Order(X);
 end task_2;
 procedure main is
 begin;
 null;
 end;
end other_tasks;

The use of explicit tasks makes it unnecessary to use the –entry-points option in your launching
script.

polyspace-ada -main other_task.main

 Shared Variables

3-11

Semaphores
Although it is possible to implement in ada, it is not possible to take into account a semaphore system
call in Polyspace Server for Ada. Nevertheless, Critical sections on page 3-9 may be used to model
the behavior.

3 Assumptions Used During Verification

3-12

Pointers to Explicit Tasks
If a task type is used through a pointer, then Polyspace automatically adds two instances of this task
type to the Polyspace execution model of your application. Task pointer objects that are used in your
application are represented by these two instances. Polyspace uses these instances to simulate tasks
associated with the execution of your application.

Consider the following example.
package Test is
 task type Ressource_T is
 entry Get (X : out integer);
 entry Set (X : in integer);
 end Ressource_T;
 type Ressource_Ptr_T is access Ressource_T;
 Ressource_Ptr : Ressource_Ptr_T;
 V : Integer := 0;
 function Alloc_Ressource return Ressource_Ptr_T;
 procedure Test_Ressource;
private
end Test;

package body Test is
 task body Ressource_T is
 Random : Boolean;
 pragma Volatile (Random);
 begin
 while Random loop
 select
 accept Get (X : out Integer) do
 X := V + 2;
 end Get;
 or
 accept Set(X : in Integer) do
 V := X - 2;
 end Set;
 end select;
 end loop;
 end Ressource_T;

 function Alloc_Ressource return Ressource_Ptr_T is
 begin
 return new Ressource_T;
 end Alloc_Ressource;

 procedure Test_Ressource is
 X : Integer;
 Tp : Ressource_Ptr_T;
 begin
 Tp := Alloc_Ressource;
 Tp.Get(X);
 end Test_Ressource;
end Test;

At the end of verification, in the Results List view, you see two instances of the task type
Ressource_T, that is, PST_Ressource_T_1 and PST_Ressource_T_2.

 Pointers to Explicit Tasks

3-13

Limitations of Polyspace Verification
Code verification has certain limitations. The Polyspace Limitations document describes known
limitations of the code verification process.

You can access the Polyspace Limitations document in the installed PDF folder:

Polyspace_Install\polyspace\verifier\ada\ada_limitations.pdf

Note By default, the Polyspace_Install folder refers to the following location:

• Windows systems – C:\Program Files\Polyspace\PolyspaceForADA_Release
• UNIX® systems – /usr/local/Polyspace/PolyspaceForADA_Release

3 Assumptions Used During Verification

3-14

Code Metrics

4

Number of Files
Number of source files

Description
This metric calculates the number of source files in your project.

Metric Information
Group: Project
Acronym: ADA_FILES

See Also
Number of Packages

4 Code Metrics

4-2

Number of Lines Without Comment
Number of code lines excluding comments

Description
This metric calculates the number of lines in a file. When calculating the value of this metric,
Polyspace excludes comments and blank lines.

Metric Information
Group: Project
Acronym: ADA_LINES_WITHOUT_CMT

See Also
Number of Files

 Number of Lines Without Comment

4-3

Number of Packages
Number of Ada packages

Description
This metric calculates the number of packages in a project.

Metric Information
Group: Project
Acronym: PACKAGES

See Also
Number of Packages in With Statements | Number of Files

4 Code Metrics

4-4

Number of Packages in With Statements
Number of packages in with statement

Description
This metric calculates the number of packages included using with statements.

Metric Information
Group: Project
Acronym: PACKWITH

See Also
Number of Subprograms in With Statements | Number of Packages

 Number of Packages in With Statements

4-5

Number of Potentially Unprotected Shared
Variables
Number of unprotected shared variables

Description
This metric measures the number of variables with the following properties:

• The variable is used in more than one task.
• At least one operation on the variable is not protected from interruption by operations in other

tasks.

For examples of potentially unprotected shared variables, see Shared unprotected global
variable.

Metric Information
Group: Project
Acronym: UNPSHV

See Also
Shared unprotected global variable

Introduced in R2018b

4 Code Metrics

4-6

Number of Protected Shared Variables
Number of protected shared variables

Description
This metric measures the number of variables with the following properties:

• The variable is used in more than one task.
• All operations on the variable are protected from interruption through critical sections or

temporal exclusions.

For examples of protected shared variables, see Shared protected global variable.

Metric Information
Group: Project
Acronym: PSHV

See Also
Shared protected global variable

Introduced in R2018b

 Number of Protected Shared Variables

4-7

Number of Subprograms in With Statements
Number of subprograms in with statement

Description
This metric calculates the number of subprograms included in with statements.

Metric Information
Group: Project
Acronym: SUBPWITH

See Also
Number of Packages in With Statements

4 Code Metrics

4-8

Global Variables

5

Shared protected global variable
Global variables shared between multiple tasks and protected from concurrent access by the tasks

Description
A shared protected global variable has the following properties:

• The variable is used in more than one task.
• Operations on the variable are protected from interruption through critical sections or temporal

exclusion. The calls to functions beginning and ending a critical section must be reachable.

In code that is not intended for multitasking, all global variables are non-shared.

In your verification results, these variables are colored green on the Source, Results List and
Variable Access panes.

Examples
Shared Variables Protected Through Temporal Exclusion

package example is

 -- Task declaration
 procedure Task1;
 procedure Task2;

 -- Public variables in package
 Shr1, Shr2 : INTEGER :=0;

 -- Public procedure in package
 procedure main;

end example;

package body example is

procedure Task1 is
 begin
 Shr1 := 1;
 Shr2 := 1;
 end Task1;

procedure Task2 is
 Tmp: INTEGER;
 begin
 Tmp := Shr1;
 Tmp := Shr2;
 end Task2;

procedure main is
 begin
 null;

5 Global Variables

5-2

 end main;

end example;

In this example, Shr1 and Shr2 are protected shared variables if you specify the following options:

Option Value
Main entry point example.main
Entry points example.Task1

example.Task2

Temporally exclusive tasks example.Task1 example.Task2

Both variables are shared between example.Task1 and example.Task2. However, because the two
tasks are temporally exclusive, the variables are protected from concurrent access.

Shared Variables Protected Through Critical Sections

package example is

 -- Task declaration
 procedure Task1;
 procedure Task2;

 -- Public variables in package
 Shr1, Shr2 : INTEGER :=0;

 -- Public procedure in package
 procedure main;

 -- Critical sections
 procedure Begin_CS;
 procedure End_CS;

end example;

package body example is

 -- Critical sections
 procedure Begin_CS is
 begin
 null;
 end Begin_CS;

 procedure End_CS is
 begin
 null;
 end;

procedure Task1 is
 Tmp: INTEGER;
 begin
 Shr1 := 1;
 Begin_CS;

 Shared protected global variable

5-3

 Shr2 := 1;
 End_CS;
 end Task1;

procedure Task2 is
 Tmp: INTEGER;
 begin
 Tmp := Shr1;
 Begin_CS;
 Tmp := Shr2;
 End_CS;
 end Task2;

 procedure main is
 begin
 null;
 end main;

end example;

In this example, Shr2 is a protected shared variable if you specify the following:

Option Value
Main entry point example.main
Entry points example.Task1

example.Task2
Critical section details Starting procedure Ending procedure

example.Begin_CS example.End_CS

The variable Shr2 is shared between example.Task1 and example.Task2. However, because
operations on the variable are between calls to the starting and ending procedure of the same critical
section, they cannot interrupt each other.

However, the variable Shr1 is potentially unprotected.

See Also
Main entry point | Entry points | Critical section details | Temporally exclusive
tasks

5 Global Variables

5-4

Shared unprotected global variable
Global variables shared between multiple tasks but not protected from concurrent access by the tasks

Description
A shared unprotected global variable has the following properties:

• The variable is used in more than one task.
• At least one operation on the variable is not protected from interruption by operations in other

tasks.

In code that is not intended for multitasking, global variables are non-shared.

In your verification results, these variables are colored orange on the Source, Results List and
Variable Access panes.

Examples
Unprotected Shared Variables

package example is

 -- Task declaration
 procedure Task1;
 procedure Task2;

 -- Public variables in package
 Shr1, Shr2 : INTEGER :=0;

 -- Public procedure in package
 procedure main;

end example;

package body example is

procedure Task1 is
 begin
 Shr1 := 1;
 Shr2 := 1;
 end Task1;

procedure Task2 is
 Tmp: INTEGER;
 begin
 Tmp := Shr1;
 Tmp := Shr2;
 end Task2;

procedure main is
 begin
 null;

 Shared unprotected global variable

5-5

 end main;

end example;

In this example, if you specify:

• example.main as main entry point,
• example.Task1 and example.Task2 as other entry points,

and do not specify protection mechanisms, Shr1 and Shr2 are potentially unprotected shared
variables

See Also
Main entry point | Entry points | Critical section details | Temporally exclusive
tasks

5 Global Variables

5-6

Non-shared used global variable
Global variables used in a single task

Description
A non-shared used global variable has the following properties:

• The variable is used only in a single task.
• At least one read or write operation is performed on it.

When determining how a variable is used, the software considers all operations, both reachable and
unreachable. In code that is not intended for multitasking, all global variables are non-shared.

In your verification results, these variables are colored black on the Results List and Variable
Access panes.

 Non-shared used global variable

5-7

Non-shared unused global variable
Global variables declared but not used

Description
A non-shared unused global variable has the following properties:

• The variable is declared in the code.
• In code that can be reached at run time, the code does not perform read or write operations on it.

In your verification results, these variables are colored gray on the Source, Results List and
Variable Access panes.

Examples
Variable Read in Unreachable Code

package example is

 procedure Task3;

 -- Public variables in package
 var: Integer;

 -- Public procedure in package
 procedure main;

end example;

package body example is

procedure Task3 is
 Tmp: INTEGER;
 begin
 if false then
 Tmp := var;
 end if;
 end Task3;

 procedure main is
 begin
 null;
 end main;

end example;

In this example, var is declared but an operation on var occurs only in deactivated code. Therefore,
Polyspace considers that var is an unused variable.

5 Global Variables

5-8

Report Components

6

Acronym Definitions
Create table of Polyspace acronyms used in report and their full forms

Description
This component creates a table containing the acronyms used in the report and their full forms.
Acronyms are used for Polyspace checks and result status.

See Also

6 Report Components

6-2

Call Hierarchy
Create table showing call graph in source code

Description
This component creates a table showing the call hierarchy in your source code. For each function call
in your source code, the table displays the following information:

• Level of call hierarchy, where the function is called.

Each level is denoted by |. If a function call appears in the table as |||->
file_name.function_name, the function call occurs at the third level of the hierarchy.
Beginning from main or an entry point, there are three function calls leading to the current call.

• File containing the function call.

In Code Prover, the line and column is also displayed.
• File containing the function definition.

In Code Prover, the line and column where the function definition begins is also displayed.

In addition, the table also displays uncalled functions.

This table captures the information available on the Call Hierarchy pane in the Polyspace user
interface.

See Also

 Call Hierarchy

6-3

Code and Verification Information
Create table of verification times and code characteristics

Description
This component creates tables containing verification times and code characteristics such as number
of lines.

Properties
Include Verification Time Information

If you select this option, the report contains verification times broken down by phase.

• For Polyspace Bug Finder™, the phases are compilation, pass0, pass1, etc.
• For Polyspace Code Prover™, the phases are compilation, global, function, etc.

Include Code Details

If you select this option, the report contains the following code characteristics:

• Number of files
• Number of lines
• Number of lines without comment

See Also

6 Report Components

6-4

Code Metrics Details
Create table of Polyspace metrics broken down by file and function

Description
This component creates a table containing metrics from a Polyspace project. The metrics appear
broken down by file and function.

Properties
Project Metrics

If you select this option, the report contains the following metrics about the project:

• Number of direct recursions
• Number of files
• Number of headers
• Number of protected and unprotected shared variables

File Metrics

If you select this option, the report contains the following metrics about each file in the project:

• Estimated function coupling
• Lines without comment
• Comment density
• Total lines

Function Metrics

If you select this option, the report contains the following metrics about each function in the project:

• Cyclomatic complexity
• Language scope
• Lower and higher estimates of local variable size
• Number of lines within body
• Number of executable lines
• Number of goto statements
• Number of call levels
• Number of called functions
• Number of call occurrences
• Number of function parameters
• Number of paths
• Number of return statements

 Code Metrics Details

6-5

• Number of instructions
• Number of calling functions

See Also

6 Report Components

6-6

Code Metrics Summary
Create table of Polyspace metrics

Description
This component creates a table containing metrics from a Polyspace project. The metrics are the
same as those displayed under . However, the file and function metrics are not broken down by
individual files and functions. Instead, the table provides the minimum and maximum value of a file
metric over all files and a function metric over all functions.

See Also

 Code Metrics Summary

6-7

Code Verification Summary
Create table of Polyspace analysis results

Description
This component creates tables containing the following results:

• Number of results
• Number of coding rule violations for each coding rule type such as MISRA C®

• Number of defects, for Polyspace Bug Finder results
• Number of checks of each color, for Polyspace Code Prover results
• Whether the project passed or failed the software quality objective

Properties
Include Checks from Polyspace Standard Library Stub Functions

Unless you deselect this option, the tables contain Polyspace Code Prover checks that appear in
Polyspace stubs for the standard library functions.

See Also

6 Report Components

6-8

Configuration Parameters
Create table of analysis options, assumptions and coding rules configuration

Description
This component creates the following tables:

• Polyspace settings: The analysis options that you used to obtain your results. The table lists
command-line version of the options along with their values.

• Analysis assumptions: The assumptions used to obtain your Code Prover results. The table lists
only the modifiable assumptions. For assumptions that you cannot change, see the Polyspace
documentation.

• Coding rules configuration: The coding rules whose violations you checked for. The table lists the
rule number, rule description and other information about the rules.

• Files with compilation errors: If your project has source files with compilation errors, these files
are listed.

See Also

 Configuration Parameters

6-9

Global Variable Checks
Create table of global variables (Code Prover only)

Description
This component creates a table of Polyspace Code Prover global variables. From this table, you can
see the number of global variables of each type.

See Also

6 Report Components

6-10

Recursive Functions
Create table of recursive functions

Description
This component creates a table containing the recursive functions in your source code (along with the
files containing the functions).

• For each direct recursion (function calling itself directly), the table lists the recursive function.
• For each indirect recursion cycle (function calling itself through other functions), the table lists

one function in the cycle.

For instance, the following code contains two indirect recursion cycles.

volatile int signal;

void operation1() {
 int stop = signal%2;
 if(!stop)
 operation1_1();
}

void operation1_1() {
 operation1();
}

void operation2() {
 int stop = signal%2;
 if(!stop)
 operation2_1();
}

void operation2_1() {
 operation2();
}

void main(){
 operation1();
 operation2();
}

The two call graph cycles are:

• operation1 → operation1_1 → operation1
• operation2 → operation2_1 → operation2

 Recursive Functions

6-11

This report component shows one function from each of the two cycles: operation1 and
operation2. To see the full cycle, open the results in the Polyspace user interface.

See Also

6 Report Components

6-12

Report Customization (Filtering)
Create filters that apply to your Polyspace reports

Description
This component allows you to filter unwanted information from existing Polyspace report templates.
To apply global filters, place this component immediately below the node representing the report
name.

Properties
Code Metrics Filters

The properties in table below apply to the inclusion of code metrics in your report.

Property Purpose User Action
Include Project Metrics Choose whether to include

metrics about your Polyspace
project.

Select the check box to include
project metrics.

Project metrics to include Specify project metrics to
include or exclude from report.

Enter a MATLAB regular
expression.

Include File Metrics Choose whether to include per
file metrics in report.

Select the check box to include
per file metrics.

File Metrics > Files to
include

Specify files to include or
exclude when reporting file
metrics.

Enter a MATLAB regular
expression.

File metrics to include Specify file metrics to include or
exclude from report.

Enter a MATLAB regular
expression.

Include Function Metrics Choose whether to include per
function metrics in report.

Select the check box to include
per function metrics.

Function Metrics > Files to
include

Specify files to include or
exclude when reporting function
metrics.

Enter a MATLAB regular
expression.

Functions to include Specify functions to include or
exclude when reporting function
metrics.

Enter a MATLAB regular
expression.

Function metrics to include Specify function metrics to
include or exclude from report.

Enter a MATLAB regular
expression.

Coding Rules Filters

The properties in table below apply to the inclusion of coding rule violations in your report.

 Report Customization (Filtering)

6-13

Property Purpose User Action
Files to include Specify files to include or

exclude when reporting coding
rule violations.

Enter a MATLAB regular
expression.

Coding rule numbers to
include

Specify coding rules to include
or exclude when reporting
coding rule violations.

Enter a MATLAB regular
expression.

Classifications to include Specify classifications to include
or exclude when reporting
coding rule violations.

Enter a MATLAB regular
expression.

Status types to include Specify statuses to include or
exclude when reporting coding
rule violations.

Enter a MATLAB regular
expression.

Run-time Check Filters

The properties in table below apply to the inclusion of Polyspace Code Prover checks in your report.

Property Purpose
Red Checks Specify whether to include red checks in your

report. Red checks indicate proven run-time
errors.

Gray Checks Specify whether to include gray checks in your
report. Gray checks indicate unreachable code.

Orange Checks Specify whether to include orange checks in your
report. Orange checks indicate possible run-time
errors.

Green Checks Specify whether to include green checks in your
report. Green checks indicate that an operation
does not contain a specific run-time error.

Inspection Point Checks Specify whether to include inspection point
checks in your report. These checks allow an user
to find the values that a variable can take at a
certain point in the code.

Unreachable Functions Specify whether to include unreachable functions
in your report.

Advanced Filters

The properties in table below apply to the inclusion of metrics, coding rule violations and Polyspace
Code Prover checks in your report.

Property Purpose User Action
Justification status Choose whether to report only

justified checks, only unjustified
checks or all checks.

Choose an option from the
dropdown list.

6 Report Components

6-14

Property Purpose User Action
Files to include Specify files to include or

exclude from your report.
Enter a MATLAB regular
expression.

Check types to include Specify Polyspace Code Prover
checks to include in your report.

Enter a MATLAB regular
expression.

Function names to include Specify functions to include or
exclude from your report.

Enter a MATLAB regular
expression.

Classification types to
include

Specify classifications to include
or exclude from your report.

Enter a MATLAB regular
expression.

Status types to include Specify statuses to include or
exclude from your report.

Enter a MATLAB regular
expression.

Comments to include Specify comments to include or
exclude from your report.

Enter a MATLAB regular
expression.

See Also
Topics
“Regular Expressions” (MATLAB)

 Report Customization (Filtering)

6-15

Run-time Checks Details Ordered by Color/File
Create overrides for global filters in Polyspace reports (Code Prover only)

Description
This component adds detailed information about the run-time checks to your report. This component
can also be used to override global filters in specific chapters of your report. Use the following
workflow when using filters in your report:

1 To create filters that apply to all chapters of your report, use the Report Customization
(Filtering) component. For more information, see Report Customization (Filtering).

2 To override some of the filters in individual chapters, use the Run-time Checks Details
Ordered by Color/File component. Select the Override Global Report filter box.

Properties
Categories To Include

The properties in table below apply to the inclusion of Polyspace Code Prover checks in your report.

Property Purpose
Red Checks Specify whether to include red checks in your

report. Red checks indicate proven run-time
errors.

Gray Checks Specify whether to include gray checks in your
report. Gray checks indicate unreachable code.

Orange Checks Specify whether to include orange checks in your
report. Orange checks indicate possible run-time
errors.

Green Checks Specify whether to include green checks in your
report. Green checks indicate that an operation
does not contain a specific run-time error.

Inspection Point Checks Specify whether to include inspection point
checks in your report. These checks allow an user
to find the values that a variable can take at a
certain point in the code.

Unreachable Functions Specify whether to include unreachable functions
in your report.

Advanced Filters

The properties in table below apply to the inclusion of metrics, coding rule violations and Polyspace
Code Prover checks in your report.

6 Report Components

6-16

Property Purpose User Action
Justification status Choose whether to report only

justified checks, only unjustified
checks or all checks.

Choose an option from the
dropdown list.

Files to include Specify files to include or
exclude from your report.

Enter a regular MATLAB
expression.

Check types to include Specify Polyspace Code Prover
checks to include in your report.

Enter a regular MATLAB
expression.

Function names to include Specify functions to include or
exclude from your report.

Enter a regular MATLAB
expression.

Classification types to
include

Specify classifications to include
or exclude from your report.

Enter a regular MATLAB
expression.

Status types to include Specify statuses to include or
exclude from your report.

Enter a regular MATLAB
expression.

Comments to include Specify comments to include or
exclude from your report.

Enter a regular MATLAB
expression.

See Also

 Run-time Checks Details Ordered by Color/File

6-17

Run-time Checks Details Ordered by Review
Information
Create table with run-time checks ordered by review information (Code Prover only)

Description
This component creates tables displaying the Polyspace Code Prover checks in your code. All checks
with same combination of Severity and Status appear in the same table.

See Also

6 Report Components

6-18

Run-time Checks Summary Ordered by File
Create table with run-time checks ordered by file (Code Prover only)

Description
This component creates a table displaying the number of Polyspace Code Prover checks per file in
your code.

Properties
Sort the data

Use this option to sort the rows in the table alphabetically by filename or by percentage of unproven
code.

Display as

Use this option to display the number of checks in a table or in bar charts.

Display ratio of checks in a file

Select this option to display the number of checks of a certain color as a ratio of total number of
checks in the file.

Include checks from Polyspace standard library stub functions

Select this option to include the checks from Polyspace standard library stub functions in your
display.

See Also

 Run-time Checks Summary Ordered by File

6-19

Software Quality Objectives - Run-time Checks
Details
Create table of result details for results downloaded from Polyspace Metrics

Description
This component creates tables showing results downloaded from Polyspace Metrics.

The component Software Quality Objectives - Run-time Checks Summary shows the
distribution of results. This component shows individual instances of results. Each file has a dedicated
table showing the findings in the file.

See Also

6 Report Components

6-20

Software Quality Objectives - Run-time Checks
Summary
Create table of results summary for results downloaded from Polyspace Metrics

Description
This component creates a table showing the distribution of run-time checks in results downloaded
from Polyspace Metrics.

This component shows the distribution of run-time checks. The component Software Quality
Objectives - Run-time Checks Details shows the individual instances of run-time checks.

See Also

 Software Quality Objectives - Run-time Checks Summary

6-21

Summary By File
Create table showing summary of Polyspace results by file

Description
This component creates a table showing a breakdown of Polyspace results by file.

See Also

6 Report Components

6-22

Variable Access
Create table showing global variable access in source code (Code Prover only)

Description
This component creates a table showing the global variable access in your source code. For each
global variable, the table displays the following information:

• Variable name.

The entry for each variable is denoted by |.
• Type of the variable.
• Number of read and write operations on the variable.
• Details of read and write operations. For each read or write operation, the table displays the

following information:

• File and function containing the operation in the form file_name.function_name.

The entry for each read or write operation is denoted by ||. Write operations are denoted by <
and read operations by >.

• Line and column number of the operation.

This table captures the information available on the Variable Access pane in the Polyspace user
interface.

The table showing variable access contains only the names of files. Below this table, a second table
shows the full paths to files (in two columns, Filename and Full filename). If a variable access
occurs in a Standard library function, the two columns contain this information:

• Filename: __polyspace__stdstubs.c (the file containing Polyspace implementation of
Standard Library functions)

• Full filename: Std library

See Also

 Variable Access

6-23

Variable Checks Details Ordered By Review
Information
Create table with global variable results ordered by review information (Code Prover only)

Description
This component creates tables displaying the Polyspace Code Prover global variable results in your
code. All checks with same combination of Severity and Status appear in the same table.

See Also

6 Report Components

6-24

	Option Descriptions
	Send to Polyspace Server
	Add to results repository
	Source code language
	Target operating system
	-shared-variables-mode
	Target processor type
	Files extensions
	Remove ambiguities in comparison operators
	Value of the constant Storage_Unit
	Preprocessor definitions
	Disable preprocessor definitions
	Command/script to apply before start of the code verification
	Include folders
	Verify whole application
	Main entry point
	Multitasking
	Entry points
	Critical section details
	Temporally exclusive tasks
	Verify module
	Verify files independently
	Common source files
	Constraint setup
	Initialization of uninitialized global variables
	Continue after noninitialized variables
	Continue with noninitialized in/out parameters
	Treat import as nonvolatile
	Treat export as nonvolatile
	Precision level
	Verification level
	Verification time limit
	Sensitivity context
	Improve precision of interprocedural analysis
	Specific precision
	Max size of global array variables
	Variables to expand
	Expansion limit for a structured variable
	Generate report
	Report template
	Output format
	Disable code metrics generation
	Command/script to apply after the end of the code verification
	Other
	-ada-include-dir
	-author
	-server
	-help
	-version
	-sources
	-sources-list-file
	-from
	-report-output-name
	-import-comments
	-tmp-dir-in-results-dir
	-max-processes
	-generate-launching-script-for
	-list-all-values
	-xml-annotations-description
	polyspace-access

	Check Descriptions
	Function Not Reachable
	Non-Initialized Local Variable
	Non-Initialized Variable
	Division by Zero
	Arithmetic Exceptions
	Scalar and Float Overflow
	Correctness Condition
	Power Arithmetic
	User Assertion
	Non Terminating Call
	Non Terminating Loop
	Unreachable Code

	Assumptions Used During Verification
	Why Polyspace Verification Uses Approximations
	What is Static Verification
	Exhaustiveness

	Procedure Calls with Default Parameters
	Example
	Explanation

	_INIT_PROC Procedures
	Example

	Expansion of Sizes
	Inline Assemblers
	Volatile Variables
	Problem
	Explanation

	Shared Variables
	Abstract
	Explanation
	Solution
	Critical Sections
	Mutual Exclusion
	Rendezvous
	Semaphores

	Pointers to Explicit Tasks
	Limitations of Polyspace Verification

	Code Metrics
	Number of Files
	Number of Lines Without Comment
	Number of Packages
	Number of Packages in With Statements
	Number of Potentially Unprotected Shared Variables
	Number of Protected Shared Variables
	Number of Subprograms in With Statements

	Global Variables
	Shared protected global variable
	Shared unprotected global variable
	Non-shared used global variable
	Non-shared unused global variable

	Report Components
	Acronym Definitions
	Call Hierarchy
	Code and Verification Information
	Code Metrics Details
	Code Metrics Summary
	Code Verification Summary
	Configuration Parameters
	Global Variable Checks
	Recursive Functions
	Report Customization (Filtering)
	Run-time Checks Details Ordered by Color/File
	Run-time Checks Details Ordered by Review Information
	Run-time Checks Summary Ordered by File
	Software Quality Objectives - Run-time Checks Details
	Software Quality Objectives - Run-time Checks Summary
	Summary By File
	Variable Access
	Variable Checks Details Ordered By Review Information

